
Chapter 4 Applications of the Derivative

4.1 Related Rates

Concepts and Vocabulary

1. If a spherical balloon of volume V is inflated at a rate of 10 m3/min, where t is the time
(in minutes), then the rate of change of V with respect to t is

dV

dt
= 10 m3/min .

3. Let x2 + y2 = 25. Then, differentiating with respect to t yields

2x
dx

dt
+ 2y

dy

dt
= 0 or

dx

dt
= − y

x

dy

dt
.

Given that x = 3, y = 4 and
dy

dt
= 2, it follows that

dx

dt
= −4

3
· 2 = −8

3
.

Skill Building

5. Let V =
1

12
πh3. Then, differentiating with respect to t yields

dV

dt
=

1

4
πh2

dh

dt
.

Given that
dh

dt
=

5π

16
when h = 8, it follows that when h = 8,

dV

dt
=

1

4
π(8)2 · 5π

16
= 5π2 .

7. Let V = 80h2. Then, differentiating with respect to t yields

dV

dt
= 160h

dh

dt
.

Given that
dh

dt
=

1

12
when h = 3, it follows that when h = 3,

dV

dt
= 160(3) · 1

12
= 40 .

9. The volume V of a cube with edge length x is V = x3. Differentiating with respect to time
t yields

dV

dt
= 3x2

dx

dt
.
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244 Chapter 4 Applications of the Derivative

Given that
dx

dt
= 3 cm/s, it follows that when x = 10 cm,

dV

dt
= 3(10)2 · 3 = 900.

When the length of a side of the cube is 10 cm, the volume is increasing at a rate of

900 cm3/s .

11. The surface area S of a sphere of radius r is S = 4πr2. Differentiating with respect to time
t yields

dS

dt
= 8πr

dr

dt
so that

dr

dt
=

1

8πr

dS

dt
.

Given that
dS

dt
= −0.1 cm2/h, it follows that when r =

20

π
cm,

dr

dt
=

1

8π(20/π)
· −0.1 = − 1

1600
= −0.000625.

When the radius of the sphere is
20

π
cm, the radius is decreasing at a rate of 0.000625 cm/h .

13. Let x and y denote the lengths of the legs of a right triangle with hypotenuse of length 45
cm. By the Pythagorean theorem, x2 + y2 = 452. Differentiating with respect to time t
yields

2x
dx

dt
+ 2y

dy

dt
= 0 or

dy

dt
= −x

y

dx

dt
.

Given that
dx

dt
= 2 cm/min, it follows that when x = 4 cm,

y =
√

452 − 42 =
√
2009 cm,

and
dy

dt
= − 4√

2009
· 2 = − 8√

2009
.

When x = 4 cm, y is decreasing at a rate of
8√
2009

cm/min ≈ 0.178 cm/min .

15. The area of an isosceles triangle with equal sides of length 4 cm and an included angle θ is

A =
1

2
42 sin θ = 8 sin θ. Differentiating with respect to time t yields

dA

dt
= 8 cos θ

dθ

dt
.

Given that
dθ

dt
= 2◦/min =

π

90
radians/min, it follows that when θ = 30◦

dA

dt
= 8 cos 30◦

π

90
=

2
√
3π

45
.

When θ = 30◦, the area of the triangle is increasing at a rate of
2
√
3π

45
cm2/min ≈ 0.242 cm2/min .
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17. The volume V and surface area S of a sphere of radius r are V =
4

3
πr3 and S = 4πr2.

Differentiating both formulas with respect to time t yields

dV

dt
= 4πr2

dr

dt
and

dS

dt
= 8πr

dr

dt
.

Solving the former equation for
dr

dt
and substituting that expression into the latter formula

gives
dr

dt
=

1

4πr2
dV

dt
so that

dS

dt
=

8πr

4πr2
dV

dt
=

2

r

dV

dt
.

Given that
dV

dt
= −1.5 m3/min, it follows that when r = 4 m,

dS

dt
=

2

4
(−1.5) = −0.75.

When the radius of the balloon is 4 m, the surface area is shrinking at a rate of 0.75 m2/min .

Applications and Extensions

19. Let x denote the distance from the lower end of the ladder to the wall against which the
ladder is leaning. Then

cos θ =
x

5
and − sin θ

dθ

dt
=

1

5

dx

dt
.

Given that
dx

dt
= 0.5 m/s, it follows that when x = 4 m,

cos θ =
4

5
so that sin θ =

√

1−
(

4

5

)2

=
3

5

and

−3

5

dθ

dt
=

1

5
(0.5).

Therefore,
dθ

dt
= −1

6
.

When the lower end of the ladder is 4 m from the wall, the inclination θ of the ladder is

deceasing at a rate of
1

6
rad/s .

21. Let h denote the depth of the water in the pool at the deep end, and let L denote the
horizontal length of the surface of the water at depth h (see the diagram below). By similar
triangles

L

h
=

30

2
= 15 so that L = 15h

and the volume of water in the pool is

V =

(

1

2
Lh

)

(5) =
5

2
(15h)h =

75

2
h2.

Differentiating with respect to time t yields

dV

dt
= 75h

dh

dt
so

dh

dt
=

1

75h

dV

dt
.
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Given that
dV

dt
= 15 m3/min, it follows that when h = 1 m,

dh

dt
=

1

75(1)
15 =

1

5
= 0.2.

When the water level is 1 m deep at the deep end of the pool, the water level is rising at

a rate of 0.2 m/min .

1 m

2 m

30 m

L

h

23. The volume V of water in the shape of a cone with radius r and height h is V =
1

3
πr2h.

Consider the diagram on the right in the text. By similar triangles

r

h
=

4

16
=

1

4
so that r =

1

4
h

and

V =
1

3
π

(

1

4
h

)2

h =
1

48
πh3.

Differentiating with respect to time t yields

dV

dt
=

1

16
πh2

dh

dt
or

dh

dt
=

16

πh2
dV

dt
.

Given that
dV

dt
= 16 m3/min, it follows that when h = 8 m,

dh

dt
=

16

π(8)2
(16) =

4

π
.

When the water is 8 m deep, the water level is rising at a rate of
4

π
m/min ≈ 1.273 m/min .

25. (a) The volume V of water in the shape of a cone with radius r and height h is V =
1

3
πr2h.

By similar triangles (see the diagram below),

r

h
=

1

4
so that r =

1

4
h

and

V =
1

3
π

(

1

4
h

)2

h =
1

48
πh3.

Differentiating with respect to time t yields

dV

dt
=

1

16
πh2

dh

dt
or

dh

dt
=

16

πh2
dV

dt
.
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Given that
dV

dt
= 3 m3/min, it follows that when h = 3 m,

dh

dt
=

16

π(3)2
(3) =

16

3π
.

When the water in the tank is 3 m deep, the water level is rising at a rate of

16

3π
m/min ≈ 1.698 m/min .

4 m

2 m

1 m

h

r

(b) Based on the observation that the depth of the water is increasing at only 0.5 m/min
when the depth is 3 m, the rate at which the volume of water in the tank is increasing
is

dV

dt
=

1

16
π(3)2(0.5) =

9π

32
m3/min ≈ 0.884 m3/min.

Because water is entering the tank at a rate of 3 m3/min, the rate at which water is
leaking from the tank is

3− 9π

32
=

96− 9π

32
m3/min ≈ 2.116 m3/min .

27. Let (x, y) be a point on the graph of the parabola y2 = 4(3− x) = 12− 4x. The distance
D from the point (x, y) to the origin is

D =
√

x2 + y2 =
√

x2 − 4x+ 12.

Differentiating both the equation of the parabola and the distance formula with respect to
time t yields

2y
dy

dt
= −4

dx

dt
or

dx

dt
= −y

2

dy

dt

and
dD

dt
=

1

2
(x2 − 4x+ 12)−1/2(2x− 4)

dx

dt
=

x− 2√
x2 − 4x+ 12

dx

dt
.

Given that
dy

dt
= 3 units per second when the object is at the point (−1, 4), it follows that

when the object is at the point (−1, 4),

dx

dt
= −4

2
(3) = −6 units per second,

and
dD

dt
=

−1− 2√
1 + 4 + 12

(−6) =
18√
17
.
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When the object is at the point (−1, 4), the distance between the object and the origin is

increasing at a rate of
18√
17

units per second ≈ 4.366 units per second .

29. The distance x between the ball and first base is

x =
√

s2 + 902 =
√

s2 + 8100,

where s is the distance between the ball and home plate along the third-base line. Differ-
entiating with respect to time t yields

dx

dt
=

1

2
(s2 + 8100)−1/2(2s)

ds

dt
=

s√
s2 + 8100

ds

dt
.

Given that
ds

dt
= 100 ft/s, it follows that when the ball crosses third base (s = 90 ft),

dx

dt
=

90√
902 + 8100

(100) =
100√
2
= 50

√
2.

When the ball crosses third base, the distance from the ball to first base is increasing at a

rate of 50
√
2 ft/s ≈ 70.711 ft/s .

31. Differentiating the equation PV 1.4 = k with respect to time t yields

P · 1.4V 0.4 dV

dt
+ V 1.4 dP

dt
= 0

so that
dP

dt
= −1.4PV 0.4

V 1.4

dV

dt
= −1.4P

V

dV

dt
.

Given that
dV

dt
= −2 cm3/min at the instant when P = 20 kg/cm2 and V = 32 cm3, it

follows that
dP

dt
= −1.4(20)

32
(−2) =

28

16
= 1.75.

At the instant when P = 20 kg/cm2 and V = 32 cm3, the pressure is increasing at a rate

of 1.75
kg/cm2

min
.

33. The area A of a circle of radius r is A = πr2. Differentiating with respect to time t yields

dA

dt
= 2πr

dr

dt
.

Given that
dr

dt
= 0.42 ft/min, it follows that when r = 120 ft,

dA

dt
= 2π(120)(0.42) = 100.8π.

When the radius of the oil spill is 120 ft, the area of the spill is increasing at a rate of

100.8π ft2/min ≈ 316.673 ft2/min .

35. Let x denote the distance from the base of the ladder to the wall and y denote the dis-
tance up the wall from the top of the ladder to the ground. Then x2 + y2 = 82 = 64.
Differentiating with respect to time t yields

2x
dx

dt
+ 2y

dy

dt
= 0 or

dy

dt
= −x

y

dx

dt
.
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(a) Given that
dx

dt
= 0.5 m/s, it follows that when x = 3 m,

y =
√

64− 32 =
√
55 m,

and
dy

dt
= − 3√

55
(0.5) = − 1.5√

55
.

The top of the ladder is moving down the wall at a rate of
1.5√
55

m/s ≈ 0.202 m/s .

(b) Given that
dx

dt
= 0.5 m/s, it follows that when x = 4 m,

y =
√

64− 42 =
√
48 = 4

√
3 m,

and
dy

dt
= − 4

4
√
3
(0.5) = − 0.5√

3
.

The top of the ladder is moving down the wall at a rate of
0.5√
3
m/s ≈ 0.289 m/s .

(c) Given that
dx

dt
= 0.5 m/s, it follows that when x = 6 m,

y =
√

64− 62 =
√
28 = 2

√
7 m,

and
dy

dt
= − 6

2
√
7
(0.5) = − 1.5√

7
.

The top of the ladder is moving down the wall at a rate of
1.5√
7
m/s ≈ 0.567 m/s .

37. Let x denote the distance from the point on the shore opposite the ship to the point where
the radar beam intersects the shoreline, and let θ denote the angle made by the beam and
the perpendicular from the ship to the shoreline (see the diagram below). Then

x

6
= tan θ so that

1

6

dx

dt
= sec2 θ

dθ

dt
.

Given that
dθ

dt
=

1 revolution

5 s
· 2π rad

revolution
=

2π

5

rad

s
,

and θ = 45◦, it follows that

dx

dt
= 6 sec2 45◦ · 2π

5
=

24π

5
.

When the beam makes an angle of 45◦ with the shore, the beam is moving along the shore

at a rate of
24π

5
km/s ≈ 15.080 km/s .
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Ship

Shoreline

x

6 km

39. Let x denote the horizontal distance from the boy to the street lamp, and let s denote the
length of the boy’s shadow (see the diagram below). By similar triangles

s

1
=
x+ s

6
so that 6s = x+ s or s =

1

5
x.

Therefore,
ds

dt
=

1

5

dx

dt
,

and with
dx

dt
= 20 m/min,

ds

dt
=

1

5
(20) = 4.

The child’s shadow is lengthening at a rate of 4 m/min .

6 m

1 m

x s

Lamp

Boy

41. Place the center of the ferris wheel at the point (0, 30), and suppose that the ferris wheel
rotates counterclockwise. Then the x- and y-coordinates of a passenger on the ferris wheel
can be modeled by

x = 25 cos θ and y = 30 + 25 sin θ.

When a passenger is 42.5 ft above the ground,

42.5 = 30 + 25 sin θ so that sin θ =
1

2
.

Given that the passenger is rising, θ = 30◦. Moreover, with

dθ

dt
=

1 revolution

2 min
· 2π rad

revolution
= π

rad

min
,

it follows that

dy

dt
= 25 cos θ

dθ

dt
= 25π cos 30◦ =

25π
√
3

2
ft/min ≈ 68.017 ft/min.
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Additionally,

dx

dt
= −25 sin θ

dθ

dt
= −25π sin 30◦ = −25π

2
ft/min ≈ −39.270 ft/min.

The passenger is rising at a rate of
25π

√
3

2
ft/min ≈ 68.017 ft/min and is moving hori-

zontally backward at a rate of
25π

2
ft/min ≈ 39.270 ft/min .

43. Let x denote the horizontal distance between the delivery truck and the elevator, and let
h denote the elevation of the elevator. The distance D between the delivery truck and the
elevator is then given by D =

√
x2 + h2, and

dD

dt
=

1

2
(x2 + h2)−1/2

(

2x
dx

dt
+ 2h

dh

dt

)

=
xdx

dt + hdh
dt√

x2 + h2
.

One second after the elevator and delivery truck begin moving, x = 8 m and h = 20 m.

Given that
dx

dt
= 8 m/s and

dh

dt
= −5 m/s, it follows that

dD

dt
=

8 · 8 + 20 · −5√
82 + 202

= − 9√
29

= −9
√
29√
29

m/s ≈ −1.671 m/s.

The elevator and the delivery truck are separating at a rate of −9
√
29√
29

m/s ≈ −1.671 m/s ;

that is, they are approaching one another at a rate of
9
√
29√
29

m/s ≈ 1.671 m/s.

45. (a) Differentiating C = 10, 000 + 3x with respect to time t yields

dC

dt
= 3

dx

dt
.

When x = 1000 switches and
dx

dt
= 50 switches per day,

dC

dt
= 3(50) = 150.

When production is 1000 switches per day, cost increases at a rate of $150/day .

(b) Differentiating

R = 5x− x2

2000

with respect to time t yields

dR

dt
=
(

5− x

1000

)dx

dt
.

When x = 1000 switches and
dx

dt
= 50 switches per day,

dR

dt
=

(

5− 1000

1000

)

· 50 = 200.

When production is 1000 switches per day, revenue increases at a rate of $200/day .
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(c) Let P denote profit, so that P = R− C and

dP

dt
=
dR

dt
− dC

dt
.

When x = 1000 switches and
dx

dt
= 50 switches per day,

dP

dt
= 200− 150 = 50,

based on the answers from parts (a) and (b). When production is 1000 switches per

day, profit increases at a rate of $50/day .

47. Because the object weighs 1000 lb on Earth’s surface, K = 1000, and

W = 1000

(

3960

3960 +R

)2

= 1000(3960)2(3960 +R)−2.

Differentiating with respect to time t then yields

dW

dt
= −2000(3960)2(3960 +R)−3 dR

dt
.

Given that
dR

dt
= 10 mi/s, it follows that when R = 50 mi,

dW

dt
= −2000

39602

(3960 + 50)3
(10) ≈ −4.864.

When the object is 50 mi above Earth’s surface, the weight of the object is decreasing at

a rate of approximately −4.864 lb/s .

49. Using the diagram in the text,

cot θ =
x

4500
,

so that

− csc2 θ
dθ

dt
=

1

4500

dx

dt
or

dx

dt
= −4500 csc2 θ

dθ

dt
.

Given that
dθ

dt
= 1◦/s =

π

180
rad/s, it follows that when θ = 30◦,

dx

dt
= −4500 · 4 · π

180
= −100π.

The plane is approaching the battery at a rate of 100π ft/s ≈ 314.159 ft/s .

51. Let x denote the horizontal distance between the searchlight and the plane. Then

cot θ =
x

3000 ft
· 5280 ft

mi
= 1.76x,

so that

− csc2 θ
dθ

dt
= 1.76

dx

dt
or

dθ

dt
= − 1.76

csc2 θ

dx

dt
.

When the distance between the plane and the searchlight is 5000 ft, then x = 4000 ft and
cot θ = 4/3 so

csc2 θ = 1 + cot2 θ = 1 +

(

4

3

)2

= 1 +
16

9
=

25

9
.
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Given that
dx

dt
= 500 mi/h, it follows that

dθ

dt
= − 1.76

25/9
(500) = −316.8.

When the distance between the searchlight and the plane is 5000 ft, the searchlight is

turning at a rate of −316.8 rad/h = −0.088 rad/s .

53. Let V = hx2.

(a) If h decreases with time but x remains constant, then

dV

dt
= x2

dh

dt
,

so that the volume of the box decreases at a rate x2 time the rate of decrease in the
height.

(b) If both h and x change with time, then

dV

dt
= h · 2xdx

dt
+ x2

dh

dt
= 2hx

dx

dt
+ x2

dh

dt
.

Answers will now vary. For example, note that the rate of change of the height is
multiplied by the area of the square base while the rate of change of the side length
of the base is multiplied by twice the area of the vertical sides.

Challenge Problems

55. Place the origin at the center of the dome, so the surface of the dome over which the
shadow travels can be modeled by the equation x2 + y2 = 302 = 900. As the shadow of
the ball moves along the surface of the dome,

2x
dx

dt
+ 2y

dy

dt
= 0 or

dx

dt
= − y

x

dy

dt
,

and the speed with which the shadow is moving is

√

(

dx

dt

)2

+

(

dy

dt

)2

=

√

1 +
y2

x2

∣

∣

∣

∣

dy

dt

∣

∣

∣

∣

=

√

x2 + y2

x2

∣

∣

∣

∣

dy

dt

∣

∣

∣

∣

=
30

√

900− y2

∣

∣

∣

∣

dy

dt

∣

∣

∣

∣

.

Because it is sunset, the rays from the sun are traveling parallel to the ground, and the
y-coordinate of the shadow is the same as the y-coordinate of the ball itself. Let t = 0
denote the time when the ball begins falling. Then the y-coordinate of the ball (and of the
shadow) is given by y = 30− 16t2, and

dy

dt
= −32t.

At t = 1/2 s, y = 30− 16(1/4) = 26 ft,
dy

dt
= −16 ft/s, and the speed of the shadow is

30√
900− 262

|−16| ≈ 32.071 ft/s .
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57. The area A of the triangle OAB is

A =
1

2
(2)(3) sin θ = 3 sin θ,

where θ is the angle between the two hands of the clock. Now the hour hand moves
one-twelfth of the circle in 60 minutes, so it moves at a rate of

1

12
· 2π · 1

60
=

π

360
rad/min,

while the minute hand makes one revolution of the circle in 60 minutes, so it moves at a
rate of

2π

60
=

π

30
rad/min.

At noon, the hour hand and the minute hand overlay, so ten minutes later the angle
between the hands is

θ =
π

30
· 10− π

360
· 10 =

π

3
− π

36
=

11π

36
,

and the rate at which the angle θ is changing is

dθ

dt
=

π

30
− π

360
=

11π

360
rad/min.

At 12:10 p.m.,
dA

dt
= 3 cos θ

dθ

dt
= 3 cos

11π

36
· 11π
360

≈ 0.165;

that is, the area of the triangle is increasing at a rate of approximately 0.165 in2/min .

AP
R©

Practice Problems

1. The volume, V , of a sphere of radius r is V = 4
3πr

3. Differentiating with respect to time t
yields

dV

dt
= 4πr2

dr

dt
.

Given that dV
dt = 50m3/min and r = D

2 = 10m, it follows that

dr

dt
=

1

4πr2
· dV
dt

=
1

4π(10)2
· (50) = 1

8π
.

When the radius of the balloon is 10 m, the radius is increasing at the rate of 1
8π m/min .

CHOICE C

3. From A = πr2, dA
dt = 2πr drdt . From A = πr2 = 25π, r = 5, so given that dr

dt = −2 it follows

that dA
dt = 2π(5)(−2) = −20π in2/min .

CHOICE A
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5. dy
dt = 3 dx

dt

Differentiating x2 + y2 = c2 with respect to time, t, yields

2x
dx

dt
+ 2y

dy

dt
= 2c

dc

dt

x
dx

dt
+ y

dy

dt
= c

dc

dt

Given that x = 6 and y = 8, it follows from x2 + y2 = c2 that c2 = (6)
2
+ (8)

8
= 100, so

c = 10.

For x = 6, y = 8, c = 10, and dc
dt = 1, it follows from xdx

dt + y dy
dt = cdcdt that

(6)
dx

dt
+ (8)3

dx

dt
= (10)(1)

30
dx

dt
= 10

dx

dt
=

1

3
.

CHOICE B

7. Differentiating V =
1

3
πr2h with respect to time, t, yields

dV

dt
=
π

3

[

2r
dr

dt
· h+ r2

dh

dt

]

.

Given that
dr

dt
= 2,

dh

dt
= 2, r = 6, and h = 15, it follows that

dV

dt
=
π

3

[

2(6)(2)(15) + (6)
2
(2)
]

= 144π cm3/h .

CHOICE C

9.

13m y

x (← 5 m/s)

(a) Differentiating x2 + y2 = 132 with respect to time, t, yields

2x
dx

dt
+ 2y

dy

dt
= 0

x
dx

dt
+ y

dy

dt
= 0
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At y = 5, x2 + 52 = 132, so x = 12

From x = 12, y = 5, dx
dt = 5, and xdx

dt + y dy
dt = 0, it follows that

(12)(5) + (5)
dy

dt
= 0

dy

dt
= −12 m/s .

(b) Differentiating A = xy
2 with respect to time, t, yields

dA

dt
=

1

2

(

y
dx

dt
+ x

dy

dt

)

From y = 5, x = 12, dx
dt = 5, and dy

dt = −12,

dA

dt
=

1

2
[(5)(5) + (12)(−12)] =

−119

2
= −59.5 m2/s .

(c) Differentiating sin θ = y
13 with respect to time, t, yields

cos θ
dθ

dt
=

1

13
· dy
dt

dθ

dt
=

1

13 cos θ
· dy
dt

From cos θ = 12
13 and dy

dt = −12,

dθ

dt
=

(−12)

13
(

12
13

) = −1 rad/s .

4.2 Maximum and Minimum Values; Critical Numbers

Concepts and Vocabulary

1. False . Any function f that is defined and continuous on a closed interval [a, b] will have
both an absolute maximum value and an absolute minimum value.

3. False . At a critical number, there may be a local extreme value.

5. False . The Extreme Value Theorem tells us when the absolute maximum and absolute
minimum exist.

Skill Building

7. For the function given in the graph,

x1: neither
x2: local maximum
x3: local minimum and absolute minimum
x4: neither
x5: local maximum
x6: neither
x7: local minimum
x8: absolute maximum

9. The figure below displays the graph of a function with the following properties: domain
[0, 8], absolute maximum at 0, absolute minimum at 3, local minimum at 7.
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1 2 3 4 5 6 7 8

11. The figure below displays the graph of a function with the following properties: domain
[3, 10] and no local extreme values.

1 2 3 4 5 6 7 8 9 10

13. Let f(x) = x2 − 8x. Because f is a polynomial function, it is differentiable everywhere, so
the critical numbers of f occur where f ′(x) = 0. Now

f ′(x) = 2x− 8 = 2(x− 4) = 0

when x = 4. Therefore, 4 is the only critical number of f .

15. Let f(x) = x3 − 3x2. Because f is a polynomial function, it is differentiable everywhere,
so the critical numbers of f occur where f ′(x) = 0. Now

f ′(x) = 3x2 − 6x = 3x(x− 2) = 0

when x = 0 and when x = 2. Therefore, 0 and 2 are the critical numbers of f .

17. Let f(x) = x4−2x2+1. Because f is a polynomial function, it is differentiable everywhere,
so the critical numbers of f occur where f ′(x) = 0. Now

f ′(x) = 4x3 − 4x = 4x(x2 − 1) = 4x(x− 1)(x+ 1) = 0

when x = 0 and when x = ±1. Therefore, −1, 0, and 1 are the critical numbers of f .

19. Let f(x) = x2/3. The domain of f is the set of all real numbers, and f ′(x) =
2

3
x−1/3. The

critical numbers of f occur where f ′(x) = 0 or where f ′(x) does not exist. Now, f ′(x) is
never equal to 0, and f ′(x) does not exist at x = 0. Because x = 0 is in the domain of f ,

0 is a critical number of f . Therefore, 0 is the only critical number of f .
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21. Let f(x) = 2
√
x. The domain of f is the set {x|x ≥ 0}, and f ′(x) =

1√
x
. The critical

numbers of f occur where f ′(x) = 0 or where f ′(x) does not exist. Now, f ′(x) is never
equal to 0, and f ′(x) does not exist at x = 0. Because x = 0 is in the domain of f , 0 is a

critical number of f . Therefore, 0 is the only critical number of f .

23. Let f(x) = x + sinx, and consider the interval 0 ≤ x ≤ π. Because f is differentiable on
0 ≤ x ≤ π, the critical numbers of f occur where f ′(x) = 0. Now,

f ′(x) = 1 + cosx = 0

when cosx = −1. On the interval 0 ≤ x ≤ π, cosx = −1 when x = π. Therefore, π is
the only critical number of f on the interval 0 ≤ x ≤ π.

25. Let f(x) = x
√
1− x2. The domain of f is the set {x| − 1 ≤ x ≤ 1}, and

f ′(x) = x · 1
2
(1− x2)−1/2(−2x) +

√

1− x2

= − x2√
1− x2

+
√

1− x2 =
−x2 + 1− x2√

1− x2
=

1− 2x2√
1− x2

.

The critical numbers of f occur where f ′(x) = 0 or where f ′(x) does not exist. Now,

f ′(x) = 0 when 1− 2x2 = 0, or when x = ±
√
2

2
, and f ′(x) does not exist when 1−x2 = 0,

or when x = ±1. All four of these numbers are in the domain of f , so all four are critical

numbers. Therefore, ±1 and ±
√
2

2
are critical numbers of f .

27. Let f(x) =
x2

x− 1
. The domain of f is the set {x|x 6= 1}, and

f ′(x) =
(x− 1)(2x)− x2

(x− 1)2
=

2x2 − 2x− x2

(x− 1)2
=
x2 − 2x

(x − 1)2
.

The critical numbers of f occur where f ′(x) = 0 or where f ′(x) does not exist. Now,
f ′(x) = 0 when x2 − 2x = x(x− 2) = 0, or when x = 0 or x = 2. On the other hand, f ′(x)
does not exist when x− 1 = 0, or when x = 1. As x = 1 is not in the domain of f , 1 is not

a critical number. Therefore, 0 and 2 are the critical numbers of f .

29. Let f(x) = (x + 3)2(x− 1)2/3. The domain of f is the set of all real numbers, and

f ′(x) = (x+ 3)2 · 2
3
(x − 1)−1/3 + (x− 1)2/3 · 2(x+ 3)

=
2(x+ 3)2

3(x− 1)1/3
+ 2(x+ 3)(x− 1)2/3 =

2(x+ 3)2 + 6(x+ 3)(x− 1)

3(x− 1)1/3

=
2(x+ 3)[x+ 3 + 3(x− 1)]

3(x− 1)1/3
=

8x(x+ 3)

3(x− 1)1/3
.

The critical numbers of f occur where f ′(x) = 0 or where f ′(x) does not exist. Now,
f ′(x) = 0 when 8x(x + 3) = 0, or when x = 0 or x = −3. On the other hand, f ′(x) does
not exist when x− 1 = 0, or when x = 1. All three of these numbers are in the domain of

f , so all three are critical numbers. Therefore, −3, 0, and 1 are critical numbers of f .
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31. Let f(x) =
(x− 3)1/3

x− 1
. The domain of f is the set {x|x 6= 1}, and

f ′(x) =
(x− 1) · 1

3 (x− 3)−2/3 − (x− 3)1/3

(x− 1)2
· 3(x− 3)2/3

3(x− 3)2/3

=
(x− 1)− 3(x− 3)

3(x− 1)2(x− 3)2/3
=

8− 2x

3(x− 1)2(x − 3)2/3
.

The critical numbers of f occur where f ′(x) = 0 or where f ′(x) does not exist. Now,
f ′(x) = 0 when 8− 2x = 0, or when x = 4. On the other hand, f ′(x) does not exist when
(x − 1)2(x − 3)2/3 = 0, or when x = 1 or x = 3. As x = 1 is not in the domain of f , 1 is

not a critical number. Therefore, 3 and 4 are critical numbers of f .

33. Let f(x) =
3
√
x2 − 9

x
. The domain of f is the set {x|x 6= 0}, and

f ′(x) =
x · 1

3 (x
2 − 9)−2/3(2x)− 3

√
x2 − 9

x2
· 3(x

2 − 9)2/3

3(x2 − 9)2/3

=
2x2 − 3(x2 − 9)

3x2(x2 − 9)2/3
=

27− x2

3x2(x2 − 9)2/3
.

The critical numbers of f occur where f ′(x) = 0 or where f ′(x) does not exist. Now,

f ′(x) = 0 when 27− x2 = 0, or when x = ±
√
27 = ±3

√
3. On the other hand, f ′(x) does

not exist when x2(x2 − 9)2/3 = 0, or when x = 0 or x = ±3. As x = 0 is not in the domain

of f , 0 is not a critical number. Therefore, ±3 and ±3
√
3 are critical numbers of f .

35. On the interval [0, 1), f(x) = 3x so f ′(x) = 3. Because f ′(x) exists everywhere on the
interval [0, 1) and is never equal to 0, f has no critical numbers in [0, 1). On the interval
(1, 2], f(x) = 4− x, so f ′(x) = −1. Because f ′(x) exists everywhere on the interval (1, 2]
and is never equal to 0, f has no critical numbers in (1, 2]. At x = 1, the rule for f changes,
so it is necessary to investigate the existence of f ′(1). Now,

lim
x→1−

f(x)− f(1)

x− 1
= lim

x→1−

3x− 3

x− 1
= lim

x→1−

3(x− 1)

x− 1
= lim

x→1−
3 = 3,

and

lim
x→1+

f(x)− f(1)

x− 1
= lim

x→1+

(4− x)− 3

x− 1
= lim

x→1+

−(x− 1)

x− 1
= lim

x→1+
−1 = −1.

Because these two one-sided limits are not equal, f ′(x) does not exist at x = 1. Therefore,

1 is the only critical number of f .

37. Let f(x) = x2 − 8x, and consider the closed interval [−1, 10]. Because f is continuous
on this closed interval, the Extreme Value Theorem guarantees that f has an absolute
maximum and an absolute minimum on [−1, 10]. The absolute maximum and absolute
minimum can only occur at the endpoints of the interval or at the critical numbers inside
the open interval. Now, f is a polynomial function, so it is differentiable everywhere, which
means that the critical numbers of f occur where f ′(x) = 0. Moreover,

f ′(x) = 2x− 8 = 2(x− 4) = 0

when x = 4. Therefore, 4 is the only critical number of f . Evaluating f at the endpoints
of the interval [−1, 10] and at the critical number 4 yields

f(−1) = (−1)2 − 8(−1) = 9

f(4) = 42 − 8(4) = −16

f(10) = 102 − 8(10) = 20.
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Therefore, the absolute maximum value of f on the interval [−1, 10] is 20 (and this occurs

at the endpoint x = 10), while the absolute minimum value of f is −16 (and this occurs

at the critical number x = 4).

39. Let f(x) = x3−3x2, and consider the closed interval [1, 4]. Because f is continuous on this
closed interval, the Extreme Value Theorem guarantees that f has an absolute maximum
and an absolute minimum on [1, 4]. The absolute maximum and absolute minimum can
only occur at the endpoints of the interval or at the critical numbers inside the open
interval. Now, f is a polynomial function, so it is differentiable everywhere, which means
that the critical numbers of f occur where f ′(x) = 0. Moreover,

f ′(x) = 3x2 − 6x = 3x(x− 2) = 0

when x = 0 or x = 2. Therefore, 0 and 2 are the critical numbers of f ; however, x = 0 is
not inside the interval (1, 4), so this critical number can be excluded. Evaluating f at the
endpoints of the interval [1, 4] and at the critical number 2 yields

f(1) = 13 − 3(1)2 = −2

f(2) = 23 − 3(2)2 = −4

f(4) = 43 − 3(4)2 = 16.

Therefore, the absolute maximum value of f on the interval [1, 4] is 16 (and this occurs

at the endpoint x = 4), while the absolute minimum value of f is −4 (and this occurs at

critical number x = 2).

41. Let f(x) = x4 − 2x2+1, and consider the closed interval [0, 2]. Because f is continuous on
this closed interval, the Extreme Value Theorem guarantees that f has an absolute maxi-
mum and an absolute minimum on [0, 2]. The absolute maximum and absolute minimum
can only occur at the endpoints of the interval or at the critical numbers inside the open
interval. Now, f is a polynomial function, so it is differentiable everywhere, which means
that the critical numbers of f occur where f ′(x) = 0. Moreover,

f ′(x) = 4x3 − 4x = 4x(x2 − 1) = 4x(x− 1)(x+ 1) = 0

when x = 0 or x = ±1. Therefore, −1, 0 and 1 are the critical numbers of f ; however, of
these numbers, only x = 1 is inside the open interval (0, 2). Evaluating f at the endpoints
of the interval [0, 2] and at the critical number 1 yields

f(0) = 1

f(1) = 14 − 2(1)2 + 1 = 0

f(2) = 24 − 2(2)2 + 1 = 9.

Therefore, the absolute maximum value of f on the interval [0, 2] is 9 (and this occurs at

the endpoint x = 2), while the absolute minimum value of f is 0 (and this occurs at the
critical number x = 1).

43. Let f(x) = x2/3, and consider the closed interval [−1, 1]. Because f is continuous on this
closed interval, the Extreme Value Theorem guarantees that f has an absolute maximum
and an absolute minimum on [−1, 1]. The absolute maximum and absolute minimum
can only occur at the endpoints of the interval or at the critical numbers inside the open
interval. Now, the critical numbers of f occur where f ′(x) = 0 or where f ′(x) does not
exist. Moreover,

f ′(x) =
2

3
x−1/3,
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so f ′(x) is never equal to 0, and f ′(x) does not exist at x = 0. Because x = 0 is in the
domain of f , 0 is a critical number of f . Evaluating f at the endpoints of the interval
[−1, 1] and the critical number 0 yields

f(−1) = (−1)2/3 = 1

f(0) = 0

f(1) = 12/3 = 1.

Therefore, the absolute maximum value of f on the interval [−1, 1] is 1 (and this occurs

at both endpoints x = ±1), while the absolute minimum value of f is 0 (and this occurs
at the critical number x = 0).

45. Let f(x) = 2
√
x, and consider the closed interval [1, 4]. Because f is continuous on this

closed interval, the Extreme Value Theorem guarantees that f has an absolute maximum
and an absolute minimum on [1, 4]. The absolute maximum and absolute minimum can
only occur at the endpoints of the interval or at the critical numbers inside the open
interval. Now, the critical numbers of f occur where f ′(x) = 0 or where f ′(x) does not
exist. Moreover,

f ′(x) =
1√
x
,

so f ′(x) is never equal to 0, and f ′(x) does not exist at x = 0. Because x = 0 is in the
domain of f , 0 is a critical number of f ; however, x = 0 is not inside the interval (1, 4), so
this critical number can be excluded, leaving no critical numbers inside the open interval.
Evaluating f at the endpoints of the interval [1, 4] yields

f(1) = 2
√
1 = 2

f(4) = 2
√
4 = 4.

Therefore, the absolute maximum value of f on the interval [1, 4] is 4 (and this occurs at

the endpoint x = 4), while the absolute minimum value of f is 2 (and this occurs at the
endpoint x = 1).

47. Let f(x) = x+sinx, and consider the closed interval [0, π]. Because f is continuous on this
closed interval, the Extreme Value Theorem guarantees that f has an absolute maximum
and an absolute minimum on [0, π]. The absolute maximum and absolute minimum can
only occur at the endpoints of the interval or at the critical numbers inside the open
interval. Now, f is differentiable everywhere, which means that the critical numbers of f
occur where f ′(x) = 0. Moreover,

f ′(x) = 1 + cosx = 0

when cosx = −1. On the interval 0 ≤ x ≤ π, cosx = −1 when x = π; however, x = π is not
inside the interval (0, π), leaving no critical numbers inside the open interval. Evaluating
f at the endpoints of the interval [0, π] yields

f(0) = sin 0 = 0

f(π) = π + sinπ = π.

Therefore, the absolute maximum value of f on the interval [0, π] is π (and this occurs

at the endpoint x = π), while the absolute minimum value of f is 0 (and this occurs at
the endpoint x = 0).

49. Let f(x) = x
√
1− x2, and consider the closed interval [−1, 1]. Because f is continuous

on this closed interval, the Extreme Value Theorem guarantees that f has an absolute
maximum and an absolute minimum on [−1, 1]. The absolute maximum and absolute
minimum can only occur at the endpoints of the interval or at the critical numbers inside
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the open interval. Now, the critical numbers of f occur where f ′(x) = 0 or where f ′(x)
does not exist. Moreover,

f ′(x) = x · 1
2
(1− x2)−1/2(−2x) +

√

1− x2

= − x2√
1− x2

+
√

1− x2 =
−x2 + 1− x2√

1− x2
=

1− 2x2√
1− x2

,

so f ′(x) = 0 when 1−2x2 = 0, or when x = ±
√
2

2
, and f ′(x) does not exist when 1−x2 = 0,

or when x = ±1. All four of these numbers are in the domain of f , so all four are critical

numbers; however, of these numbers, only x = ±
√
2

2
are inside the open interval (−1, 1).

Evaluating f at the endpoints of the interval [−1, 1] and the critical numbers ±
√
2

2
yields

f(−1) = 0

f

(

−
√
2

2

)

= −
√
2

2

√

1− 1

2
= −1

2

f

(√
2

2

)

=

√
2

2

√

1− 1

2
=

1

2

f(1) = 0.

Therefore, the absolute maximum value of f on the interval [−1, 1] is
1

2
(and this occurs

at the critical number x =

√
2

2
), while the absolute minimum value of f is −1

2
(and this

occurs at the critical number x = −
√
2

2
).

51. Let f(x) =
x2

x− 1
, and consider the closed interval

[

−1,
1

2

]

. Because f is continuous on this

closed interval, the Extreme Value Theorem guarantees that f has an absolute maximum

and an absolute minimum on

[

−1,
1

2

]

. The absolute maximum and absolute minimum

can only occur at the endpoints of the interval or at the critical numbers inside the open
interval. Now, the critical numbers of f occur where f ′(x) = 0 or where f ′(x) does not
exist. Moreover,

f ′(x) =
(x− 1)(2x)− x2

(x− 1)2
=

2x2 − 2x− x2

(x− 1)2
=
x2 − 2x

(x − 1)2
,

so f ′(x) = 0 when x2 − 2x = x(x − 2) = 0, or when x = 0 or x = 2. On the other hand,
f ′(x) does not exist when x − 1 = 0, or when x = 1. As x = 1 is not in the domain of
f , 1 is not a critical number. Therefore, 0 and 2 are the critical numbers of f ; however,

x = 2 is not inside the open interval

(

−1,
1

2

)

, so this critical number can be excluded.

Evaluating f at the endpoints of the interval

[

−1,
1

2

]

and the critical number 0 yields

f(−1) =
(−1)2

−1− 1
= −1

2
f(0) = 0

f

(

1

2

)

=
1/4

−1/2
= −1

2
.
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Therefore, the absolute maximum value of f on the interval

[

−1,
1

2

]

is 0 (and this occurs

at the critical number x = 0), while the absolute minimum value of f is −1

2
(and this

occurs at both endpoints x = −1 and x =
1

2
).

53. Let f(x) = (x + 3)2(x − 1)2/3, and consider the closed interval [−4, 5]. Because f is
continuous on this closed interval, the Extreme Value Theorem guarantees that f has
an absolute maximum and an absolute minimum on [−4, 5]. The absolute maximum and
absolute minimum can only occur at the endpoints of the interval or at the critical numbers
inside the open interval. Now, the critical numbers of f occur where f ′(x) = 0 or where
f ′(x) does not exist. Moreover,

f ′(x) = (x + 3)2 · 2
3
(x− 1)−1/3 + (x− 1)2/3 · 2(x+ 3)

=
2(x+ 3)2

3(x− 1)1/3
+ 2(x+ 3)(x− 1)2/3 =

2(x+ 3)2 + 6(x+ 3)(x− 1)

3(x− 1)1/3

=
2(x+ 3)[x+ 3 + 3(x− 1)]

3(x− 1)1/3
=

8x(x+ 3)

3(x− 1)1/3
,

so f ′(x) = 0 when 8x(x+3) = 0, or when x = 0 or x = −3. On the other hand, f ′(x) does
not exist when x− 1 = 0, or when x = 1. All three of these numbers are in the domain of
f , so all three are critical numbers. Evaluating f at the endpoints of the interval [−4, 5]
and the critical numbers −3, 0, and 1 yields

f(−4) = (−1)2(−5)2/3 = 251/3 =
3
√
25 ≈ 2.924

f(−3) = 0

f(0) = 32(−1)2/3 = 9

f(1) = 0

f(5) = 82(4)2/3 = 64(4)2/3 = 64
3
√
16 ≈ 161.270.

Therefore, the absolute maximum value of f on the interval [−4, 5] is 64 3
√
16 (and this

occurs at the endpoint x = 5), while the absolute minimum value of f is 0 (and this
occurs at the critical numbers x = −3 and x = 1).

55. Let f(x) =
(x− 3)1/3

x− 1
, and consider the closed interval [2, 11]. Because f is continuous

on this closed interval, the Extreme Value Theorem guarantees that f has an absolute
maximum and an absolute minimum on [2, 11]. The absolute maximum and absolute
minimum can only occur at the endpoints of the interval or at the critical numbers inside
the open interval. Now, the critical numbers of f occur where f ′(x) = 0 or where f ′(x)
does not exist. Moreover,

f ′(x) =
(x− 1) · 1

3 (x− 3)−2/3 − (x− 3)1/3

(x− 1)2
· 3(x− 3)2/3

3(x− 3)2/3

=
(x− 1)− 3(x− 3)

3(x− 1)2(x− 3)2/3
=

8− 2x

3(x− 1)2(x − 3)2/3
,

so f ′(x) = 0 when 8 − 2x = 0, or when x = 4. On the other hand, f ′(x) does not exist
when (x − 1)2(x − 3)2/3 = 0, or when x = 1 or x = 3.As x = 1 is not in the domain of f ,
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1 is not a critical number. Therefore, 3 and 4 are critical numbers of f . Evaluating f at
the endpoints of the interval [2, 11] and the critical numbers 3 and 4 yields

f(2) =
(−1)1/3

1
= −1

f(3) = 0

f(4) =
11/3

3
=

1

3

f(11) =
81/3

10
=

1

5
.

Therefore, the absolute maximum value of f on the interval [2, 11] is
1

3
(and this occurs

at the critical number x = 4), while the absolute minimum value of f is −1 (and this

occurs at the endpoint x = 2).

57. Let f(x) =
3
√
x2 − 9

x
, and consider the closed interval [3, 6]. Because f is continuous on this

closed interval, the Extreme Value Theorem guarantees that f has an absolute maximum
and an absolute minimum on [3, 6]. The absolute maximum and absolute minimum can
only occur at the endpoints of the interval or at the critical numbers inside the open
interval. Now, the critical numbers of f occur where f ′(x) = 0 or where f ′(x) does not
exist. Moreover,

f ′(x) =
x · 1

3 (x
2 − 9)−2/3(2x)− 3

√
x2 − 9

x2
· 3(x

2 − 9)2/3

3(x2 − 9)2/3

=
2x2 − 3(x2 − 9)

3x2(x2 − 9)2/3
=

27− x2

3x2(x2 − 9)2/3
,

so f ′(x) = 0 when 27 − x2 = 0, or when x = ±
√
27 = ±3

√
3. On the other hand, f ′(x)

does not exist when x2(x2 − 9)2/3 = 0, or when x = 0 or x = ±3. As x = 0 is not in the

domain of f , 0 is not a critical number. Therefore, ±3 and ±3
√
3 are critical numbers of

f ; however, of these numbers, only 3
√
3 is inside the open interval (3, 6). Evaluating f at

the endpoints of the interval [3, 6] and the critical number 3
√
3 yields

f(3) = 0

f(3
√
3) =

3
√
18

3
√
3
≈ 0.504

f(6) =
3
√
27

6
=

1

2
.

Therefore, the absolute maximum value of f on the interval [3, 6] is
3
√
18

3
√
3

(and this occurs

at the critical number x = 3
√
3), while the absolute minimum value of f is 0 (and this

occurs at the endpoint x = 3).

59. Let f(x) = ex − 3x, and consider the closed interval [0, 1]. Because f is continuous on this
closed interval, the Extreme Value Theorem guarantees that f has an absolute maximum
and an absolute minimum on [0, 1]. The absolute maximum and absolute minimum can
only occur at the endpoints of the interval or at the critical numbers inside the open
interval. Now, f is differentiable everywhere, which means that the critical numbers of f
occur where f ′(x) = 0. Moreover,

f ′(x) = ex − 3 = 0
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when x = ln 3. Therefore, ln 3 is the only critical number of f ; however, x = ln 3 ≈ 1.099
is not inside the interval (0, 1), so this critical number can be excluded, leaving no critical
numbers inside the open interval. Evaluating f at the endpoints of the interval [0, 1] yields

f(0) = e0 − 3(0) = 1

f(1) = e1 − 3(1) = e− 3 ≈ −0.282.

Therefore, the absolute maximum value of f on the interval [0, 1] is 1 (and this occurs at

the endpoint x = 0), while the absolute minimum value of f is e− 3 (and this occurs at

the endpoint x = 1).

61. The function f is continuous on the intervals [0, 1) and (1, 3] because the component
functions 2x+ 1 and 3x are continuous on these intervals, respectively. At x = 1,

lim
x→1−

f(x) = lim
x→1−

(2x+ 1) = 3 and lim
x→1+

f(x) = lim
x→1+

(3x) = 3,

so that lim
x→1

f(x) exists and is equal to 3. As f(1) = 3(1) = 3, it follows that f is continuous

at x = 1. Hence, f is continuous on the closed interval [0, 3].

Now, on the interval [0, 1), f(x) = 2x + 1 so f ′(x) = 2. Because f ′(x) exists everywhere
on the interval [0, 1) and is never equal to 0, f has no critical numbers in [0, 1). On the
interval (1, 3], f(x) = 3x, so f ′(x) = 3. Because f ′(x) exists everywhere on the interval
(1, 3] and is never equal to 0, f has no critical numbers in (1, 3]. At x = 1, the rule for f
changes, so it is necessary to investigate the existence of f ′(1). Now,

lim
x→1−

f(x)− f(1)

x− 1
= lim

x→1−

(2x+ 1)− 3

x− 1
= lim

x→1−

2(x− 1)

x− 1
= lim

x→1−
2 = 2,

and

lim
x→1+

f(x)− f(1)

x− 1
= lim

x→1+

3x− 3

x− 1
= lim

x→1+

3(x− 1)

x− 1
= lim

x→1+
3 = 3.

Because these two one-sided limits are not equal, f ′(x) does not exist at x = 1. Therefore,
1 is the only critical number of f . Evaluating f at the endpoints of the interval [0, 3] and
the critical number 1 yields

f(0) = 2(0) + 1 = 1

f(1) = 3(1) = 3

f(3) = 3(3) = 9.

Therefore, the absolute maximum value of f on the interval [0, 3] is 9 (and this occurs at

the endpoint x = 3), while the absolute minimum value of f is 1 (and this occurs at the
endpoint x = 0).

63. The function f is continuous on the intervals [−2, 1) and (1, 2] because the component
functions x2 and x3 are continuous on these intervals, respectively. At x = 1,

lim
x→1−

f(x) = lim
x→1−

x2 = 1 and lim
x→1+

f(x) = lim
x→1+

x3 = 1,

so that lim
x→1

f(x) exists and is equal to 1. As f(1) = 13 = 1, it follows that f is continuous

at x = 1. Hence, f is continuous on the closed interval [−2, 2].

Now, on the interval [−2, 1), f(x) = x2 so f ′(x) = 2x. Because f ′(x) exists everywhere on
the interval [−2, 1) but is equal to 0 at x = 0, 0 is a critical number in [−2, 1). On the
interval (1, 2], f(x) = x3, so f ′(x) = 3x2. Because f ′(x) exists everywhere and is never
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equal to 0 on the interval (1, 2], f has no critical numbers in (1, 2]. At x = 1, the rule for
f changes, so it is necessary to investigate the existence of f ′(1). Now,

lim
x→1−

f(x)− f(1)

x− 1
= lim

x→1−

x2 − 1

x− 1
= lim

x→1−

(x+ 1)(x− 1)

x− 1
= lim

x→1−
(x+ 1) = 2,

and

lim
x→1+

f(x)− f(1)

x− 1
= lim

x→1+

x3 − 1

x− 1
= lim

x→1+

(x − 1)(x2 + x+ 1)

x− 1
= lim

x→1+
(x2 + x+ 1) = 3.

Because these two one-sided limits are not equal, f ′(x) does not exist at x = 1. Therefore,
1 is a critical number of f . Evaluating f at the endpoints of the interval [−2, 2] and the
critical numbers 0 and 1 yields

f(−2) = (−2)2 = 4

f(0) = 02 = 0

f(1) = 13 = 1

f(2) = 23 = 8.

Therefore, the absolute maximum value of f on the interval [−2, 2] is 8 (and this occurs

at the endpoint x = 2), while the absolute minimum value of f is 0 (and this occurs at
the critical number x = 0).

Applications and Extensions

65. Let f(x) = 3x4 − 2x3 − 21x2 + 36x.

(a) Then f ′(x) = 12x3 − 6x2 − 42x+ 36 .

(b) The polynomial function f is differentiable everywhere, so the critical numbers of f
occur where f ′(x) = 0. Using the computer algebra system Maple,

12x3 − 6x2 − 42x+ 36 = 0

when x = −2, x = 1, and x =
3

2
. Therefore, −2, 1, and

3

2
are the critical numbers

of f .

(c) The figure below displays the graph of f . The graph suggests that f has an

absolute minimum at −2 , a local maximum at 1 , and a local minimum at
3

2
.
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67. Let f(x) =
(x2 − 5x+ 2)

√
x+ 5√

x2 + 2
.

(a) Then

ln f(x) = ln

(

(x2 − 5x+ 2)
√
x+ 5√

x2 + 2

)

= ln(x2 − 5x+ 2) +
1

2
ln(x+ 5)− 1

2
ln(x2 + 2)

and
d

dx
ln f(x) =

d

dx

(

ln(x2 − 5x+ 2) +
1

2
ln(x+ 5)− 1

2
ln(x2 + 2)

)

1

f(x)

df

dx
=

1

x2 − 5x+ 2
· (2x− 5) +

1

2
· 1

x+ 5
− 1

2
· 1

x2 + 2
· 2x

=
2x− 5

x2 − 5x+ 2
+

1

2x+ 10
− x

x2 + 2

=
(2x− 5)(2x+ 10)(x2 + 2) + (x2 − 5x+ 2)(x2 + 2)− x(x2 − 5x+ 2)(2x+ 10)

2(x2 − 5x+ 2)(x+ 5)(x2 + 2)

=
(4x4 + 10x3 − 42x2 + 20x− 100) + (x4 − 5x3 + 4x2 − 10x+ 4)− (2x4 − 46x2 + 20x)

2(x2 − 5x+ 2)(x+ 5)(x2 + 2)

=
3x4 + 5x3 + 8x2 − 10x− 96

2(x2 − 5x+ 2)(x+ 5)(x2 + 2)
.

Therefore,

f ′(x) =
(x2 − 5x+ 2)

√
x+ 5√

x2 + 2
· 3x4 + 5x3 + 8x2 − 10x− 96

2(x2 − 5x+ 2)(x+ 5)(x2 + 2)
=

3x4 + 5x3 + 8x2 − 10x− 96

2
√
x+ 5(x2 + 2)3/2

.

(b) The critical numbers of f occur where f ′(x) = 0 or where f ′(x) does not exist. Now,
f ′(x) does not exist at x = −5. Using the computer algebra system Maple,

3x4 + 5x3 + 8x2 − 10x− 96

2
√
x+ 5(x2 + 2)3/2

= 0

when x ≈ −2.364 and x ≈ 1.977. Therefore, −5, −2.364, and 1.977 are the critical

numbers of f .
(c) The figure below displays the graph of f . The graph suggests that f has an

absolute minimum at 1.977 , a local maximum at −2.364 , and

neither a local maximum nor a local minimum at −5 .
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69. Let f(x) = x4 − 12.4x3 + 49.24x2 − 68.64x.

(a) Then f ′(x) = 4x3 − 37.2x2 + 98.48x− 68.64 .

(b) Consider the closed interval [0, 5]. Because f is continuous on this closed interval, the
Extreme Value Theorem guarantees that f has an absolute maximum and an absolute
minimum on [0, 5]. The absolute maximum and absolute minimum can only occur
at the endpoints of the interval or at the critical numbers inside the open interval.
Now, f is a polynomial function, so it is differentiable everywhere, which means that
the critical numbers of f occur where f ′(x) = 0. Using the computer algebra system
Maple,

4x3 − 37.2x2 + 98.48x− 68.64 = 0

when x = 1.1, when x = 3, and when x = 5.2. Therefore, 1.1, 3, and 5.2 are the
critical numbers of f ; however, x = 5.2 is not inside the open interval (0, 5), so this
critical number can be excluded. Evaluating f at the endpoints of the interval [0, 5]
and at the critical numbers 1.1 and 3 yields

f(0) = 0

f(1.1) = −30.9639

f(3) = −16.56

f(5) = −37.2.

Therefore, the absolute maximum value of f on the interval [0, 5] is 0 (and this

occurs at the endpoint x = 0), while the absolute minimum value of f is −37.2 (and

this occurs at the endpoint x = 5).

(c) The figure below displays the graph of f , which does support the conclusions from part (b) :

the absolute maximum occurs at 0 and the absolute minimum occurs at 5.
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71. (a) Let C(x) = 3.60

(

2500

x
+ x

)

and consider the interval [10, 75]. Because C is contin-

uous on this closed interval, the Extreme Value Theorem guarantees that C has an
absolute maximum and an absolute minimum on [10, 75]. The absolute maximum and
absolute minimum can only occur at the endpoints of the interval or at the critical
numbers inside the open interval. The critical numbers of C occur where C′(x) = 0
or where C′(x) does not exist. Now,

C′(x) = 3.60

(

−2500

x2
+ 1

)

,

so C′(x) = 0 when x = ±50 and C′(x) does not exist when x = 0. Because x = 0
is not in the domain of C, 0 is not a critical number. Therefore, ±50 are the critical
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numbers of C; however, x = −50 is not inside the open interval (10, 75), so this
number can be excluded. Evaluating C at the endpoints of the interval [10, 75] and
at the critical number 50 yields

C(10) = 3.60

(

2500

10
+ 10

)

= 3.60(260) = 936

C(50) = 3.60

(

2500

50
+ 50

)

= 3.60(100) = 360

C(75) = 3.60

(

2500

75
+ 75

)

= 3.60 · 325
3

= 390.

Therefore, the absolute minimum value of C on the interval [10, 75] is $360 and this oc-

curs at x = 50. The most economical speed for the truck to travel is 50 miles per hour .

(b) The figure below displays the graph of C.
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73. Let R(θ) =
v20
√
2

16
cos θ(sin θ − cos θ).

(a) Consider the closed interval [45◦, 90◦]. Because R is continuous on this closed inter-
val, the Extreme Value Theorem guarantees that R has an absolute maximum and
an absolute minimum on [45◦, 90◦]. The absolute maximum can only occur at the
endpoints of the interval or at the critical numbers inside the open interval. Now, R
is differentiable everywhere, which means that the critical numbers of R occur where
R′(θ) = 0. Moreover,

R′(θ) =
v20
√
2

16
[cos θ(cos θ + sin θ)− (sin θ − cos θ) sin θ]

=
v20
√
2

16

(

cos2 θ − sin2 θ + 2 sin θ cos θ
)

=
v20
√
2

16
(cos 2θ + sin 2θ).
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Therefore, R′(θ) = 0 when cos 2θ + sin 2θ = 0. On the interval 45◦ ≤ θ ≤ 90◦,
cos 2θ + sin 2θ = 0 when θ = 67.5◦. Evaluating f at the endpoints of the interval
[45◦, 90◦] and the critical number 67.5◦ yields

R(45◦) =
v20
√
2

16
cos 45◦(sin 45◦ − cos 45◦) = 0

R(67.5◦) =
v20
√
2

16
cos 67.5◦(sin 67.5◦ − cos 67.5◦) ≈ 0.0183v20

R(90◦) =
v20
√
2

16
cos 90◦(sin 90◦ − cos 90◦) = 0.

Therefore, the absolute maximum value of R on the interval [45◦, 90◦] occurs when

θ = 67.5◦ . The maximum value of R is approximately 0.0183v20 .

(b) The figure below displays the graph of R using v0 = 32 ft/s. The dashed vertical line
is drawn at θ = 67.5◦.
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(c) Based on the graph in part (b), the angle that maximizes R is θ = 67.5◦, and the
maximum range is approximately

0.0183(32)2 ≈ 18.745 feet.

75. (a) Let R =
2v20
g

sin θ cos θ =
v20
g

sin 2θ, and consider the interval [0◦, 90◦]. Because R

is continuous on this closed interval, the Extreme Value Theorem guarantees that
R has an absolute maximum and an absolute minimum on [0◦, 90◦]. The absolute
maximum can only occur at the endpoints of the interval or at the critical numbers
inside the open interval. Now, R is differentiable everywhere, which means that the
critical numbers of R occur where R′(θ) = 0. Moreover,

R′(θ) =
2v20
g

cos 2θ = 0

when cos 2θ = 0. On the interval [0◦, 90◦], cos 2θ = 0 when θ = 45◦. Evaluating f at
the endpoints of the interval [0◦, 90◦] and the critical number 45◦ yields

R(0◦) =
v20
g

sin 0◦ = 0

R(45◦) =
v20
g

sin 90◦ =
v20
g

R(90◦) =
v20
g

sin 180◦ = 0 = 0.
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Therefore, the absolute maximum value of R is achieved when θ = 45◦; that is, the
golf ball achieves its maximum range when the golfer hits the ball at an angle of 45◦.

(b) With v0 = 91.1 m/s and g = 9.8 m/s2, the maximum range is

v20
g

=
91.12

9.8
≈ 846.858 m .

77. With t =
√

27− 3q2, the tax revenue R is given by

R = tq = q
√

27− 3q2.

The domain of this function is the set {q| − 3 ≤ q ≤ 3}; however, from an economics
standpoint, the quantity consumed must be greater than or equal to 0, so consider the
function R over the interval [0, 3]. Because R is continuous on this closed interval, the
Extreme Value Theorem guarantees that R has an absolute maximum and an absolute
minimum on [0, 3]. The absolute maximum can only occur at the endpoints of the interval
or at the critical numbers inside the open interval. Now, the critical numbers of R occur
where R′(q) = 0 or where R′(q) does not exist. Moreover,

R′(q) = q · 1
2
(27− 3q2)−1/2(−6q) +

√

27− 3q2

= − 3q2
√

27− 3q2
+
√

27− 3q2 =
−3q2 + 27− 3q2
√

27− 3q2
=

27− 6q2
√

27− 3q2
,

so R′(q) = 0 when 27 − 6q2 = 0, or when q = ±3
√
2

2
, and R′(q) does not exist when

27 − 3q2 = 0, or when q = ±3. Of these numbers, only
3
√
2

2
lies inside the open interval

(0, 3). Evaluating R at the endpoints of the interval [0, 3] and the critical number
3
√
2

2
yields

R(0) = 0
√
27 = 0

R

(

3
√
2

2

)

=
3
√
2

2

√

√

√

√27− 3

(

3
√
2

2

)2

=
9
√
3

2
≈ 7.794

R(3) = 3
√

27− 3(3)2 = 0.

Therefore, the absolute maximum value of R on the interval [0, 3] is
9
√
3

2
(and this occurs

at the critical number q =
3
√
2

2
). Substituting this value for q into the formula for t gives

t =

√

√

√

√27− 3

(

3
√
2

2

)2

=
3
√
6

2
≈ 3.674.

The maximum tax revenue is approximately 7.794 , and this is produced with a

tax rate of approximately 3.674 .

79. Let y = 15 cosh
x

15
− 10 and consider the interval [−6, 6], thus assuming that the x-axis is

placed along the ground with the two poles at (−6, 0) and (6, 0). Because y is continuous
on this closed interval, the Extreme Value Theorem guarantees that y has an absolute
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maximum and an absolute minimum on [−6, 6]. The absolute minimum can only occur
at the endpoints of the interval or at the critical numbers inside the open interval. Now,
y is differentiable everywhere, which means that the critical numbers of y occur where
y′(x) = 0. Moreover,

y′(x) = sinh
x

15
= 0

when x = 0. Evaluating y at the endpoints of the interval [−6, 6] and the critical number
0 yields

y(−6) = 15 cosh

(

− 6

15

)

− 10 ≈ 6.216

y(0) = 15 cosh0− 10 = 5

y(6) = 15 cosh

(

6

15

)

− 10 ≈ 6.216.

Therefore, the absolute minimum value of y on the interval [−6, 6] is 5; that is, the height

of the cable at its lowest point is 5 m .

81. (a) Let f(x) =
x3

3
− 0.055x2 + 0.0028x − 4. Because f is a polynomial function, it is

differentiable everywhere. Therefore, the critical numbers of f occur where f ′(x) = 0.
Now,

f ′(x) = x2 − 0.11x+ 0.0028 = 0

when

x =
0.11±

√

0.112 − 4(0.0028)

2
=

0.11±
√
0.0009

2
=

0.11± 0.03

2
= 0.07, 0.04 .

(b) Evaluating f at the endpoints of the closed interval [−1, 1] and at the critical numbers
0.04 and 0.07 yields

f(−1) ≈ −4.391133333

f(0.04) ≈ −3.999954667

f(0.07) ≈ −3.999959167

f(1) ≈ −3.718866667.

Therefore, the absolute maximum value of f on the interval [−1, 1] is approximately

−3.719 (which occurs at the endpoint x = 1), and the absolute minimum value is

approximately −4.391 (which occurs at the endpoint x = −1).

(c) The figure below displays the graph of f on the interval [−1, 1].
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83. Let f(x) =
√
1 + x2+|x−2|, and consider the interval [0, 3]. Because f is continuous on this

closed interval, the Extreme Value Theorem guarantees that f has an absolute maximum
and an absolute minimum on [0, 3]. The absolute maximum and absolute minimum can
only occur at the endpoints of the interval or at the critical numbers inside the open
interval. Now, the critical numbers of f occur where f ′(x) = 0 or where f ′(x) does not

exist. On the interval [0, 2), x− 2 < 0, so f(x) =
√
1 + x2 − x+ 2 and

f ′(x) =
1

2
(1 + x2)−1/2(2x)− 1 =

x√
1 + x2

− 1.

This derivative exists and is never equal to zero for 0 ≤ x < 2, so there are no critical
numbers on this interval. On the interval (2, 3], x− 2 > 0, so f(x) =

√
1 + x2 + x− 2 and

f ′(x) =
1

2
(1 + x2)−1/2(2x) + 1 =

x√
1 + x2

+ 1.

This derivative exists and is never equal to zero for 2 < x ≤ 3, so there are no critical
numbers on this interval. At x = 2, f ′(x) does not exist because of the |x − 2| term, so
2 is a critical number of f . Evaluating f at the endpoints of the interval [0, 3] and at the
critical number 2 yields

f(0) =
√
1 + |0− 2| = 1 + 2 = 3

f(2) =
√
1 + 4 + 0 =

√
5

f(3) =
√
1 + 9 + |3− 2| =

√
10 + 1.

Therefore, the absolute maximum value of the function f on the interval [0, 3] is
√
10 + 1

(and this occurs at the endpoint x = 3 ), while the absolute minimum value is
√
5 (and

this occurs at the critical point x = 2 ).

85. Let f(x) = [(16− x2)(x2 − 9)]1/2.

(a) The domain of f is determined by the inequality (16−x2)(x2−9) ≥ 0. Now, 16−x2 is
positive for −4 < x < 4 and is negative for |x| > 4; on the other hand, x2−9 is positive
for |x| > 3 and is negative for −3 < x < 3. It follows that 16 − x2 and x2 − 9 have
the same sign for −4 < x < −3 and 3 < x < 4. Additionally, (16 − x2)(x2 − 9) = 0
for x = ±3 and x± 4. Therefore, the domain of f is the set

{x| − 4 ≤ x ≤ −3 or 3 ≤ x ≤ 4} ,

or in interval notation [−4,−3]∪ [3, 4] .

(b) Note that

f(−x) = [(16− (−x)2)((−x)2 − 9)]1/2 = [(16− x2)(x2 − 9)]1/2 = f(x),

so f is an even function. To determine the absolute maximum value of f on its
domain, it is therefore sufficient to consider the closed interval [3, 4]. The absolute
maximum can only occur at the endpoints of the interval or at the critical numbers
inside the open interval. Now, the critical numbers of f occur where f ′(x) = 0 or
where f ′(x) does not exist. Moreover,

f ′(x) =
1

2
[(16− x2)(x2 − 9)]−1/2[(16− x2)(2x) + (x2 − 9)(−2x)]

=
1

[(16− x2)(x2 − 9)]1/2
· (16x− x3 − x3 + 9x)

=
x(25− 2x2)

[(16− x2)(x2 − 9)]1/2
,
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so f ′(x) = 0 when 25− 2x2 = 0 or x = ±5
√
2

2
and f ′(x) does not exist when x = ±3

and when x = ±4. Of these numbers, only
5
√
2

2
is inside the open interval (3, 4).

Evaluating f at the endpoints of the closed interval [3, 4] and the critical number

5
√
2

2
yields

f(3) = 0

f

(

5
√
2

2

)

=

√

(

16− 25

2

)(

25

2
− 9

)

=
7

2

f(4) = 0.

Therefore, the absolute maximum value of f on the interval [3, 4] is
7

2
. Because f is

an even function, it follows that the absolute maximum value on the interval [−4,−3]

is also
7

2
, so the absolute maximum value of f on its domain is

7

2
.

87. (a) Not necessarily true . Just because a function is continuous on a closed interval [a, b]

is no guarantee that the function is differentiable on (a, b).

(b) Not necessarily true . An absolute maximum can occur at an endpoint of the interval

[a, b]; even if the absolute maximum occurs at a critical number, the derivative might
not exist at that critical number.

(c) True . This is the definition of continuity on the open interval (a, b).

(d) Not necessarily true . Just because a function is continuous on a closed interval [a, b]

is no guarantee that the function is differentiable on (a, b); even if the function is
differentiable, the derivative does not need to equal 0 for some x, a ≤ x ≤ b.

(e) True . This follows from the Extreme Value Theorem.

89. The absolute extreme values of a continuous function defined on a closed interval [a, b]
can only occur at the endpoints of the interval or at the critical numbers inside the open
interval (a, b). Therefore, first determine the critical numbers of the function: determine
where inside the open interval that the derivative is equal to zero and where the derivative
does not exist. Next, evaluate the function at the endpoints of the interval and at the
critical numbers inside the interval. Finally, identify the absolute maximum value (the
largest of the function values obtained in the previous step) and the absolute minimum
value (the smallest of the function values obtained in the previous step).

91. Suppose f has a local minimum at c. Then, for all x in an open interval containing
c, f(c) ≤ f(x). Multiplying this inequality by −1 yields −f(c) ≥ −f(x). Now, let
g(x) = −f(x). Then the last inequality becomes g(c) ≥ g(x) for all x in an open interval
containing c. Therefore, g has a local maximum at c.

Challenge Problems

93. (a) Let a, b, c, and d be real numbers, n ≥ 1 an integer, and f(x) =
ax2n + b

cxn + d
. If a = 0,

then

f(x) =
b

cxn + d
= b(cxn + d)−1 and f ′(x) = −bcnxn−1(cxn + d)−2.

Now, f ′(x) does not exist when cxn + d = 0, but any x that satisfies this equation is
not in the domain of f , so it cannot be a critical number. Therefore, the only critical
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numbers of f occur where f ′(x) = 0, which is at x = 0. So, if a = 0, then f has only
one critical number.
Next, consider the case c = 0 but d 6= 0 (c and d cannot be simultaneously equal to
zero, as that would cause division by zero for all x). Then

f(x) =
a

d
x2n +

b

d
and f ′(x) =

2an

d
x2n−1.

Now, f ′(x) exists for all x and is equal to zero only at x = 0. When c = 0 but d 6= 0,
f has only one critical number.
Finally, suppose a 6= 0 and c 6= 0. Then

f ′(x) =
(cxn + d)(2anx2n−1)− (ax2n + b)(cnxn−1)

(cxn + d)2

=
2acnx3n−1 + 2adnx2n−1 − acnx3n−1 − bcnxn−1

(cxn + d)2

=
acnxn−1

(

x2n + 2 d
cx

n − b
a

)

(cxn + d)2
.

Now, f ′(x) does not exist when cxn + d = 0, but any x that satisfies this equation is
not in the domain of f , so it cannot be a critical number. Therefore, the only critical
numbers of f occur where f ′(x) = 0. Clearly, f ′(x) = 0 when x = 0. Any other
critical numbers are the zeros of the function

g(x) = x2n + 2
d

c
xn − b

a
=

(

xn +
d

c

)2

−
(

b

a
+
d2

c2

)

.

The number of zeros of g depends on the values of a, b, c, and d:

i. If
b

a
+
d2

c2
< 0, g has no zeros.

ii. If
b

a
+
d2

c2
= 0, then g has one zero if n is odd (which will not be 0 provided d 6= 0)

but 2 zeroes if n is even and d/c < 0.

iii. If
b

a
+
d2

c2
> 0, then g has two zeros if n is odd (neither of which will be 0 provided

b 6= 0) but can have 0, 2, or 4 zeros if n is even depending on the signs of

−d
c
+

√

b

a
+
d2

c2
and − d

c
−
√

b

a
+
d2

c2
.

It follows that f can have at most five critical numbers.

(b) Based on part (a), in order for f to have five critical numbers, n must be even and

b

a
+
d2

c2
, −d

c
+

√

b

a
+
d2

c2
, and − d

c
−
√

b

a
+
d2

c2

must all be positive. Answers will vary, but one choice of parameter values is n = 2,
a = 1, b = −1, c = 1, and d = −2. Note that

b

a
+
d2

c2
= −1 + 4 = 3 > 0

−d
c
+

√

b

a
+
d2

c2
= 2 +

√
3 > 0

−d
c
−
√

b

a
+
d2

c2
= 2−

√
3 > 0.
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The function

f(x) =
x4 − 1

x2 − 2

has exactly five critical numbers:

0, ±
√

2 +
√
3, and ±

√

2−
√
3.

AP
R©

Practice Problems

1. g(x) = sinx+ cosx. The domain is (0, 2π)

The critical numbers of g occur where g′(x) = 0 or where g′(x) does not exist. This happens
when

g′(x) = 0

cosx− sinx = 0

cosx = sinx

tanx = 1

x =
π

4
and x =

5π

4
, on the domain (0, 2π)

Since both of these numbers are in the domain they are both critical numbers. And g′(x)
is defined everywhere, so there are no other critical numbers on the domain. Therefore
π
4 and 5π

4 are the critical numbers.

CHOICE C

3. f(x) = 2x3 − 15x2 + 36x. The domain is [0, 4].

The critical numbers of f occur where f ′(x) = 0 or where f ′(x) does not exist.

This happens when

f ′(x) = 0

6x2 − 30x+ 36 = 0

6(x− 3)(x− 2) = 0

x = 3 or x = 2

Since both x = 3 and x = 2 are in the domain, they are critical numbers. Since f(x) is
defined everywhere, there are no other critical values. Evaluate f at the critical numbers,
3 and 2, and at the endpoints 0 and 4.

x f(x) = 2x3 − 15x2 + 36x Conclusion

0 2(0)
3 − 15(0)

2
+ 36(0) = 0

2 2(2)
3 − 15(2)

2
+ 36(2) = 28

3 2(3)
3 − 15(3)

2
+ 36(3) = 27

4 2(4)
3 − 15(4)

2
+ 36(4) = 32 Absolute Maximum

CHOICE C

5. f(x) =

{

x2 + 1 if − 2 ≤ x ≤ 1
3x2 − 4x+ 3 if 1 < x ≤ 3
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The critical numbers of f occur where f ′(x) = 0 or where f ′(x) does not exist.

f ′(x) =
{

2x if − 2 ≤ x ≤ 1
6x− 4 if 1 < x ≤ 3

For −2 ≤ x ≤ 1,

f ′(x) = 0

2x = 0

x = 0

which is a critical number, since −2 ≤ 0 ≤ 1.

For 1 < x ≤ 3,

f ′(x) = 0

6x− 4 = 0

x =
3

2

which is not a critical number, since 3
2 � 1, so 3

2 is not in the domain of this part of the
definitions of f(x) and f ′(x).

Therefore, the sole critical number is 0 .

CHOICE D

4.3 The Mean Value Theorem

Concepts and Vocabulary

1. False . If a function f is defined and continuous on a closed interval [a, b], differentiable
on the open interval (a, b), and if f(a) = f(b), then Rolle’s Theorem guarantees that there
is at least one number c in the interval (a, b) for which f ′(c) = 0. The conclusion of Rolle’s
Theorem involves the derivative of the function, not the function itself.

3. True . If two functions f and g are differentiable on an open interval (a, b) and if f ′(x) =
g′(x) for all numbers x in (a, b), then f and g differ by a constant on (a, b).

Skill Building

5. Let f(x) = x2−3x. The polynomial function f is continuous and differentiable everywhere,
so it is continuous on the closed interval [0, 3] and differentiable on the open interval (0, 3).
Additionally,

f(0) = 0 and f(3) = 32 − 3(3) = 0,

so f(0) = f(3). The function f therefore satisfies all three conditions of Rolle’s Theorem

on the interval [0, 3]. Now, f ′(x) = 2x− 3, so f ′(c) = 0 when c =
3

2
.

7. Let g(x) = x2 − 2x− 2. The polynomial function g is continuous and differentiable every-
where, so it is continuous on the closed interval [0, 2] and differentiable on the open interval
(0, 2). Additionally,

g(0) = −2 and g(2) = 22 − 2(2)− 2 = −2,

so g(0) = g(2). The function g therefore satisfies all three conditions of Rolle’s Theorem

on the interval [0, 2]. Now, g′(x) = 2x− 2, so g′(c) = 0 when c = 1 .
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9. Let f(x) = x3−x. The polynomial function f is continuous and differentiable everywhere,
so it is continuous on the closed interval [−1, 0] and differentiable on the open interval
(−1, 0). Additionally,

f(−1) = (−1)3 − (−1) = 0 and f(0) = 0,

so f(−1) = f(0). The function f therefore satisfies all three conditions of Rolle’s Theorem

on the interval [−1, 0]. Now, f ′(x) = 3x2 − 1, so f ′(c) = 0 when c = ±
√
3

3
. Of these two

numbers, only c = −
√
3

3
is in the interval [−1, 0].

11. Let f(t) = t3−t+2. The polynomial function f is continuous and differentiable everywhere,
so it is continuous on the closed interval [−1, 1] and differentiable on the open interval
(−1, 1). Additionally,

f(−1) = (−1)3 − (−1) + 2 = 2 and f(1) = 13 − 1 + 2 = 2,

so f(−1) = f(1). The function f therefore satisfies all three conditions of Rolle’s Theorem

on the interval [−1, 1]. Now, f ′(t) = 3t2 − 1, so f ′(c) = 0 when c = ±
√
3

3
.

13. Let s(t) = t4 − 2t2 + 1. The polynomial function s is continuous and differentiable ev-
erywhere, so it is continuous on the closed interval [−2, 2] and differentiable on the open
interval (−2, 2). Additionally,

s(−2) = (−2)4 − 2(−2)2 + 1 = 9 and s(2) = 24 − 2(2)2 + 1 = 9,

so s(−2) = s(2). The function s therefore satisfies all three conditions of Rolle’s The-
orem on the interval [−2, 2]. Now, s′(t) = 4t3 − 4t = 4t(t2 − 1), so s′(c) = 0 when

c = 0 or c = ±1 .

15. Let f(x) = sin(2x). The trigonometric function f is continuous and differentiable every-
where, so it is continuous on the closed interval [0, π] and differentiable on the open interval
(0, π). Additionally,

f(0) = sin 0 = 0 and f(π) = sin(2π) = 0,

so f(0) = f(π). The function f therefore satisfies all three conditions of Rolle’s Theorem
on the interval [0, π]. Now, f ′(x) = 2 cos(2x), so f ′(c) = 0 on the interval (0, π) when

c =
π

4
or c =

3π

4
.

17. Let f(x) = x2 − 2x + 1. Though the polynomial function f is continuous on the closed
interval [−2, 1] and differentiable on the open interval (−2, 1),

f(−2) = (−2)2 − 2(−2) + 1 = 9 and f(1) = 1− 2 + 1 = 0.

Therefore, f(−2) 6= f(1) , so Rolle’s Theorem does not apply for the function f on the

interval [−2, 1].

19. Let f(x) = x1/3 − x. Though f is continuous on the closed interval [−1, 1],

f ′(x) =
1

3
x−2/3 − 1,

so f is not differentiable at 0 and therefore is not differentiable on the open interval (−1, 1) .

Consequently, Rolle’s Theorem cannot be applied to the function f on the interval [−1, 1].
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21. Let f(x) = x2+1. The polynomial function f is continuous and differentiable everywhere,
so it is continuous on the closed interval [0, 2] and differentiable on the open interval (0, 2).
The function f therefore satisfies the conditions of the Mean Value Theorem on the interval
[0, 2]. Now,

f ′(x) = 2x and
f(b)− f(a)

b− a
=
f(2)− f(0)

2− 0
=

5− 1

2
= 2,

so

f ′(c) =
f(b)− f(a)

b− a
when 2c = 2,

or when c = 1 .

At x = c = 1, the slope of the tangent line to the graph of f is the same as the slope of
the secant line connecting the points (0, 1) and (2, 5). That is, mtan = f ′(c) = f ′(1) = 2

and msec =
f(2)−f(0)

2−0 = 5−1
2 = 2. The tangent line and the secant line are parallel.

23. Let f(x) = ln
√
x =

1

2
lnx. The function f is continuous and differentiable on the set

{x|x > 0}, so it is continuous on the closed interval [1, e] and differentiable on the open
interval (1, e). The function f therefore satisfies the conditions of the Mean Value Theorem
on the interval [1, e]. Now,

f ′(x) =
1

2x
and

f(b)− f(a)

b− a
=
f(e)− f(1)

e− 1
=

1
2 − 0

e− 1
=

1

2(e− 1)
,

so

f ′(c) =
f(b)− f(a)

b− a
when

1

2c
=

1

2(e− 1)
,

or when c = e − 1 . Note that e− 1 ≈ 1.718 > 1.

At x = c = e− 1, the slope of the tangent line to the graph of f is the same as the slope of
the secant line connecting the points (1, 0) and

(

e, 12
)

. That is, mtan = f ′(c) = f ′(e− 1) =
1

2(e−1) and msec = f(e)−f(1)
e−1 =

1
2
−0

e−1 = 1
2(e−1) . The tangent line and the secant line are

parallel.
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25. Let f(x) = x3 − 5x2 + 4x− 2. The polynomial function f is continuous and differentiable
everywhere, so it is continuous on the closed interval [1, 3] and differentiable on the open
interval (1, 3). The function f therefore satisfies the conditions of the Mean Value Theorem
on the interval [1, 3]. Now,

f ′(x) = 3x2 − 10x+ 4 and
f(b)− f(a)

b− a
=
f(3)− f(1)

3− 1
=

−8− (−2)

2
= −3,

so

f ′(c) =
f(b)− f(a)

b− a
when 3c2 − 10c+ 4 = −3.

Therefore,

3c2 − 10c+ 7 = 0

(3c− 7)(c− 1) = 0

c =
7

3
, 1.

Of these numbers, only c =
7

3
is in the interval (1, 3).

At x = c = 7
3 , the slope of the tangent line to the graph of f is the same as the slope of the

secant line connecting the points (1,−2) and (3,−8). That is, mtan = f ′(c) = f ′( 7
3

)

= −3

and msec =
f(3)−f(1)

3−1 = −8−(−2)
2 = −3. The tangent line and the secant line are parallel.
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27. Let f(x) =
x+ 1

x
= 1 +

1

x
. The function f is continuous and differentiable on the set

{x|x 6= 0}, so it is continuous on the closed interval [1, 3] and differentiable on the open
interval (1, 3). The function f therefore satisfies the conditions of the Mean Value Theorem
on the interval [1, 3]. Now,

f ′(x) = − 1

x2
and

f(b)− f(a)

b− a
=
f(3)− f(1)

3− 1
=

4
3 − 2

2
= −1

3
,

so

f ′(c) =
f(b)− f(a)

b− a
when − 1

c2
= −1

3
.

Therefore, c2 = 3 and c = ±
√
3. Of these numbers, only c =

√
3 is in the interval (1, 3).

At x = c =
√
3, the slope of the tangent line to the graph of f is the same as the slope of the

secant line connecting the points (1, 2) and
(

3, 43
)

. That is, mtan = f ′(c) = f ′(√3
)

= − 1
3

and msec =
f(3)−f(1)

3−1 =
4
3
−2

2 = − 1
3 . The tangent line and the secant line are parallel.
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29. Let f(x) =
3
√
x2. The function f is continuous on the set of all real numbers and differen-

tiable on the set {x|x 6= 0}, so it is continuous on the closed interval [1, 8] and differentiable
on the open interval (1, 8). The function f therefore satisfies the conditions of the Mean
Value Theorem on the interval [1, 8]. Now,

f ′(x) =
2

3
x−1/3 and

f(b)− f(a)

b− a
=
f(8)− f(1)

8− 1
=

4− 1

7
=

3

7
,

so

f ′(c) =
f(b)− f(a)

b− a
when

2

3
c−1/3 =

3

7
.

Therefore, c1/3 =
14

9
and c =

(

14

9

)3

=
2744

729
.

At x = c =
(

14
9

)3
= 2744

729 , the slope of the tangent line to the graph of f is the same as
the slope of the secant line connecting the points (1, 1) and (8, 4). That is, mtan = f ′(c) =

f ′
[

(

14
9

)3
]

= f ′( 2744
729

)

= 3
7 and msec = f(8)−f(1)

8−1 = 4−1
7 = 3

7 . The tangent line and the

secant line are parallel.

31. Let f(x) = x3 + 6x2 +12x+1. The polynomial function f is differentiable everywhere, so
the critical numbers of f occur where f ′(x) = 0. Now,

f ′(x) = 3x2 + 12x+ 12 = 3(x2 + 4x+ 4) = 3(x+ 2)2,

so −2 is the only critical number. The Increasing/Decreasing Function Test states that
f is increasing on intervals where f ′(x) > 0 and that f is decreasing on intervals where
f ′(x) < 0. Because f ′(x) > 0 for all x 6= −2, it follows that f is increasing on the
intervals (−∞,−2) and (−2,∞). Since f is continuous on its domain, we can say that f

is increasing on (−∞,∞) .

33. Let f(x) = x3 − 3x + 1. The polynomial function f is differentiable everywhere, so the
critical numbers of f occur where f ′(x) = 0. Now,

f ′(x) = 3x2 − 3 = 3
(

x2 − 1
)

= 3(x+ 1)(x− 1)



4.3 The Mean Value Theorem 283

so −1 and 1 are critical numbers. The Increasing/Decreasing Function Test states that f is
increasing on intervals where f ′(x) > 0 and that f is decreasing on intervals wheref ′(x) < 0.
These inequalities are solved by using the critical numbers −1 and 1 to form three intervals.
The sign of f ′(x) is then determined on each interval, as shown in the following table.

Interval Sign of x+ 1 Sign of x− 1 Sign of f ′(x) Conclusion

(−∞,−1) − − + f is increasing
(−1, 1) + − − f is decreasing
(1,∞) + + + f is increasing

Therefore, f is increasing on the intervals (−∞,−1) and (1,∞) and decreasing on the
interval (−1, 1). Since f is continuous on its domain, we can say that f is

increasing on the intervals (−∞,−1] and [1,∞) and decreasing on the interval [−1, 1] .

35. Let f(x) = x4 − 4x2 + 1. The polynomial function f is differentiable everywhere, so the
critical numbers of f occur where f ′(x) = 0. Now,

f ′(x) = 4x3 − 8x = 4x
(

x2 − 2
)

= 4x
(

x+
√
2
)(

x−
√
2
)

so −
√
2, 0, and

√
2 are critical numbers. The Increasing/Decreasing Function Test states

that f is increasing on intervals where f ′(x) > 0 and that f is decreasing on intervals

where f ′(x) < 0. These inequalities are solved by using the critical numbers −
√
2, 0, and√

2 to form four intervals. The sign of f ′(x) is then determined on each interval, as shown
in the following table.

Interval Sign of 4x Sign of x+
√
2 Sign of x−

√
2 Sign of f ′(x) Conclusion

(

−∞,−
√
2
)

− − − − f is decreasing
(

−
√
2, 0
)

− + − + f is increasing
(

0,
√
2
)

+ + − + f is decreasing
(√

2,∞
)

+ + + + f is increasing

Therefore, f is increasing on the intervals
(

−
√
2, 0
)

and
(√

2,∞
)

and decreasing on the

intervals
(

−∞,−
√
2
)

and
(√

2,∞
)

. Since f is continuous on its domain, we can say that

f is increasing on the intervals
[

−
√
2, 0
]

and
[√

2,∞
)

and

decreasing on the intervals
(

−∞,−
√
2
]

and
[

0,
√
2
]

.

37. Let f(x) = x2/3(x2 − 4). The critical numbers of f occur where f ′(x) = 0 or where f ′(x)
does not exist. Now,

f ′(x) = x2/3(2x) + (x2 − 4) · 2
3
x−1/3 =

3x(2x) + 2(x2 − 4)

3x1/3
=

8x2 − 8

3x1/3
=

8(x− 1)(x+ 1)

3x1/3
,

so −1, 0, and 1 are the critical numbers. The Increasing/Decreasing Function Test states
that f is increasing on intervals where f ′(x) > 0 and that f is decreasing on intervals
where f ′(x) < 0. These inequalities are solved by using the critical numbers −1, 0, and 1
to form four intervals. The sign of f ′(x) is then determined on each interval, as shown in
the following table.
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Sign of Sign of Sign of Sign of
Interval 8(x− 1) x+ 1 3x1/3 f ′(x) Conclusion

(−∞,−1) − − − − f is decreasing
(−1, 0) − + − + f is increasing
(0, 1) − + + − f is decreasing
(1,∞) + + + + f is increasing

Therefore, f is increasing on the intervals (−1, 0) and (1,∞) and decreasing on the in-
tervals (−∞,−1) and (0, 1). Since f is continuous on its domain, we can say that f is

increasing on the intervals [−1, 0] and [1,∞) and decreasing on the intervals (−∞,−1] and [0, 1] .

39. Let

f(x) = |x3 + 3| =
{

−(x3 + 3), x < − 3
√
3

x3 + 3, x ≥ − 3
√
3.

On the interval (−∞,− 3
√
3), f ′(x) = −3x2 exists and is never equal to 0; f has no critical

numbers on this interval. On the interval (− 3
√
3,∞), f ′(x) = 3x2 exists and is equal to 0

when x = 0. It follows that 0 is a critical number. At x = − 3
√
3, the rule for f changes, so

it is necessary to investigate the existence of f ′(− 3
√
3). Now,

lim
x→− 3

√
3
−

f(x)− f(− 3
√
3)

x− (− 3
√
3)

= lim
x→− 3

√
3
−

−(x3 + 3)− 0

x+ 3
√
3

= lim
x→− 3

√
3
−

−(x+ 3
√
3)(x2 − 3

√
3x+ 3

√
9)

x+ 3
√
3

= lim
x→− 3

√
3
−

−(x2 − 3
√
3x+

3
√
9) = −3

3
√
9,

and

lim
x→− 3

√
3
+

f(x)− f(− 3
√
3)

x− (− 3
√
3)

= lim
x→− 3

√
3
+

(x3 + 3)− 0

x+ 3
√
3

= lim
x→− 3

√
3
+

(x+ 3
√
3)(x2 − 3

√
3x+ 3

√
9)

x+ 3
√
3

= lim
x→− 3

√
3
+
(x2 − 3

√
3x+

3
√
9) = 3

3
√
9.

Because these two one-sided limits are not equal, f ′(x) does not exist at x = − 3
√
3. There-

fore, − 3
√
3 is also a critical number of f .

The Increasing/Decreasing Function Test states that f is increasing on intervals where
f ′(x) > 0 and that f is decreasing on intervals where f ′(x) < 0. On the interval

(−∞,− 3
√
3), f ′(x) = −3x2 < 0, while on the intervals (− 3

√
3, 0) and (0,∞), f ′(x) =

3x2 > 0. Therefore, f is decreasing on the interval (−∞,− 3
√
3) and increasing on the

intervals (− 3
√
3, 0) and (0,∞). Since f is continuous on its domain, we can say that f is

decreasing on the interval (−∞,− 3
√
3] and is increasing on the interval [− 3

√
3,∞) .

41. Let f(x) = 3 sinx. The function f is a constant multiple of the trigonometric function
sinx, which is differentiable everywhere; therefore, f is differentiable everywhere. The
critical numbers of f therefore occur where f ′(x) = 0. Now,

f ′(x) = 3 cosx,
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so the critical numbers on the interval (0, 2π) are
π

2
and

3π

2
. The Increasing/Decreasing

Function Test states that f is increasing on intervals where f ′(x) > 0 and that f is de-

creasing on intervals where f ′(x) < 0. On the interval
(

0,
π

2

)

, f ′(x) > 0; on the interval
(

π

2
,
3π

2

)

, f ′(x) < 0; finally, on the interval

(

3π

2
, 2π

)

, f ′(x) > 0. Therefore, f is increasing

on the intervals
(

0,
π

2

)

and

(

3π

2
, 2π

)

and decreasing on the interval

(

π

2
,
3π

2

)

. Since f is

continuous on its domain, we can say that f is increasing on the intervals
[

0,
π

2

]

and

[

3π

2
, 2π

]

and decreasing on the interval

[

π

2
,
3π

2

]

.

43. Let f(x) = xex. The function g is differentiable everywhere, so the critical numbers of f
occur where f ′(x) = 0. Now,

f ′(x) = xex + ex = (x+ 1)ex,

so −1 is the only critical number. The Increasing/Decreasing Function Test states that
f is increasing on intervals where f ′(x) > 0 and that f is decreasing on intervals where
f ′(x) < 0. These inequalities are solved by using the critical number −1 to form two
intervals. The sign of f ′(x) is then determined on each interval, as shown in the following
table.

Interval Sign of x+ 1 Sign of ex Sign of f ′(x) Conclusion

(−∞,−1) − + − f is decreasing
(−1,∞) + + + f is increasing

Therefore, f is increasing on the interval (−1,∞) and decreasing on the interval (−∞,−1).

Since f is continuous on its domain, we can say that f is increasing on the interval [−1,∞)

and
decreasing on the interval (−∞,−1] .

45. Let f(x) = ex sinx. The function f is differentiable everywhere, so the critical numbers of
f occur where f ′(x) = 0. Now,

f ′(x) = ex cosx+ ex sinx = ex(sinx+ cosx),

so the critical numbers on the interval (0, 2π) are
3π

4
and

7π

4
. The Increasing/Decreasing

Function Test states that f is increasing on intervals where f ′(x) > 0 and that f is
decreasing on intervals where f ′(x) < 0. These inequalities are solved by using the critical

numbers
3π

4
and

7π

4
to form three intervals. The sign of f ′(x) is then determined on each

interval, as shown in the following table.

Sign of Sign of Sign of
Interval ex sinx+ cosx f ′(x) Conclusion
(

0, 3π4
)

+ + + f is increasing
(

3π
4 ,

7π
4

)

+ − − f is decreasing
(

7π
4 , 2π

)

+ + + f is increasing
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Therefore, f is increasing on the intervals

(

0,
3π

4

)

and

(

7π

4
, 2π

)

and decreasing on

the interval

(

3π

4
,
7π

4

)

. Since f is continuous on its domain, we can say that f is

increasing on the intervals

[

0,
3π

4

]

and

[

7π

4
, 2π

]

and decreasing on the interval

[

3π

4
,
7π

4

]

.

47. (a) {x|x 6= −2, x 6= 2}
(b) −2, 0, 2, and 4

(c) 0 and 4

(d) 2

(e) −2

(f) (−∞, 0] and [2, 4]

(g) [0, 2] and [4,∞)

49. (a) {x|x 6= −1, x 6= 0}
(b) −2, −1, 0, 1, and 2

(c) −2, 1, and 2

(d) −1

(e) 0

(f) (−∞, 1] and [2,∞)

(g) [1, 2]

Applications and Extensions

51. Let f(x) = 2x3 − 6x2 + 6x− 5. The polynomial function f is differentiable everywhere, so
the critical numbers of f occur where f ′(x) = 0. Now,

f ′(x) = 6x2 − 12x+ 6 = 6(x2 − 2x+ 1) = 6(x− 1)2,

so 1 is the only critical number. The Increasing/Decreasing Function Test states that f
is increasing on intervals where f ′(x) > 0 and that f is decreasing on intervals where
f ′(x) < 0. Because f ′(x) > 0 for all x 6= 1, it follows that f is increasing on the intervals
(−∞, 1) and (1,∞). Since f is continuous on its domain, we can say that f is increasing
for all x.

53. Let f(x) =
x

x+ 1
. The rational function f is differentiable on its domain, the set {x|x 6=

−1}, so the critical numbers of f occur where f ′(x) = 0. Now,

f ′(x) =
(x+ 1)(1)− x(1)

(x+ 1)2
=
x+ 1− x

(x+ 1)2
=

1

(x+ 1)2
,

so f has no critical numbers. For x 6= −1, f ′(x) > 0, so the Increasing/Decreasing Function
Test indicates that f is increasing on the intervals (−∞,−1) and (−1,∞); that is, f is
increasing on any interval that does not contain x = −1.

55. Answers will vary. The figure below displays the graph of a function that is continuous
on the closed interval [1, 3] but not differentiable on the open interval (1, 3) – the function
is not differentiable at x = 2 – and for which the conclusion of the Mean Value Theorem
does not hold. Note that

f(3)− f(1)

3− 1
=

1− 1

2
= 0,

but the graph of the function does not have a horizontal tangent line anywhere on the open
interval (1, 3).
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1 2 3

1

2

3

4

57. Let s(t) denote the distance function of the automobile, and assume that this function is
differentiable. If the automobile traveled 20 miles at an average speed of 40 mph, the trip
took one half hour to complete. Let t = 0 denote the beginning of the trip and t = 0.5
denote the end of the trip. Because s is continuous on the closed interval [0, 0.5] and
differentiable on the open interval (0, 0.5), the conditions of the Mean Value Theorem are
satisfied. Therefore, there exists at least one c in (0, 0.5) such that

s′(c) =
s(0.5)− s(0)

0.5− 0
=

20− 0

0.5
= 40 mph.

Now, s′ is the speed of the automobile, so the speed was exactly 40 mph at some time
during the trip.

59. Let f(t) = f2(t) − f1(t), and let t = 0 denote the start of the race and t = T denote the
end of the race for these two cars. Because the cars start the race together and finish in a
tie,

f(0) = f2(0)− f1(0) = 0 and f(T ) = f2(T )− f1(T ) = 0.

Assuming that f1 and f2 are continuous on the closed interval [0, T ] and differentiable on
the open interval (0, T ), the function f will also be continuous on the closed interval [0, T ]
and differentiable on the open interval (0, T ). The Mean Value Theorem therefore applies
to f over [0, T ], so there is at least one c in (0, T ) such that

f ′(c) =
f(T )− f(0)

T − 0
=

0− 0

T − 0
= 0.

Recalling the definition of f , this last statement is equivalent to f ′
2(c) − f ′

1(c) = 0, or
f ′
2(c) = f ′

1(c). Therefore, at some time during the race, the two cars are traveling at the
same speed.

61. Let d = − 1

192
x4 +

25

384
x3 − 25

128
x2 on the closed interval [0, 5].

(a) The polynomial function d is continuous on the closed interval [0, 5] and differentiable
on the open interval (0, 5). Moreover, d(0) = 0 and

d(5) = − 1

192
54 +

25

384
53 − 25

128
52 =

54

384
(−2 + 5− 3) = 0.

Therefore, d satisfies the conditions of Rolle’s Theorem on the interval [0, 5].

(b) According to part (a), d(0) = d(5) = 0 , so the deflection at the ends of the beam is

always zero; therefore, the ends of the beam must be held fixed in place.
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(c) Differentiating d yields

d′(x) = − 1

48
x3 +

25

128
x2 − 25

64
x = − x

384
(8x2 − 75x+ 150).

Therefore, d′(c) = 0 when c = 0 and when 8c2−75c+150 = 0. Applying the quadratic
formula to this last equation gives

c =
75±

√

(−75)2 − 4(8)(150)

16
=

75±
√
825

16
=

75± 5
√
33

16
.

Now,

c =
75 + 5

√
33

16
≈ 6.483 and c =

75− 5
√
33

16
≈ 2.892,

so the only c in (0, 5) that satisfies the conclusion of Rolle’s Theorem is

c =
75− 5

√
33

16
≈ 2.892 ft . Using the computer algebra system Maple,

d

(

75− 5
√
33

16

)

= −24375 + 34375
√
33

524288
ft ≈ −0.423 ft .

(d) The figure below displays the graph of d on the interval [0, 5].

1 2 3 4 5

-0.4

-0.3

-0.2

-0.1

63. Let f(x) = (x − 1) sinx. The function f is continuous and differentiable everywhere, so
it is continuous on the closed interval [0, 1] and differentiable on the open interval (0, 1).
Additionally, f(0) = (−1) sin 0 = 0, and f(1) = (0) sin 1 = 0, so f(0) = f(1), and all three
conditions of Rolle’s Theorem are satisfied. Therefore, there exists at least one c in (0, 1)
such that f ′(c) = 0. Now,

f ′(x) = (x− 1) cosx+ sinx,

so
(c− 1) cos c+ sin c = 0.

Because c ∈ (0, 1), cos c 6= 0, so the previous equation can be divided by cos c to yield

c− 1 + tan c = 0 or tan c+ c = 1.

In conclusion, the equation tanx+ x = 1 has a solution in the interval (0, 1).
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65. Let f(x) = (x − 8)3. Then f(8) = (8 − 8)3 = 0, so 8 is a real zero of f . Suppose, for the
sake of contradiction, that f does have another real zero at z. The polynomial function
f is continuous and differentiable everywhere, so it is continuous on the closed interval
between z and 8 and differentiable on the open interval between z and 8. Additionally,
f(z) = f(8) = 0, so Rolle’s Theorem applies and there must exist a c between z and 8 such
that f ′(c) = 0. However, f ′(x) = 3(x − 8)2 = 0 only for x = 8 which is not between the
positive numbers z and 8. Therefore, f has exactly one real zero.

67. Though the function f(x) = |x| is continuous on the closed interval [−1, 1], it is

not differentiable on the open interval (−1, 1) because f ′(x) does not exist at x = 0.

Therefore, Rolle’s Theorem does not apply to f on the interval [−1, 1].

69. Let f(x) = sin−1 x. Then

f(1)− f(0) = sin−1 1− sin−1 0 =
π

2
− 0 =

π

2
,

and f ′(x) =
1√

1− x2
. Therefore,

f ′(N) =
1√

1−N2
=
π

2

when
√

1−N2 =
2

π

1−N2 =
4

π2

N2 = 1− 4

π2

N = ±
√

1− 4

π2
.

Of these numbers, N =

√

1− 4

π2
is contained in the interval (0, 1).

71. (a) Let f(x) =
√
x. The Increasing/Decreasing Function Test states that f is increasing

on intervals where f ′(x) > 0 and that f is decreasing on intervals where f ′(x) < 0.
Now,

f ′(x) =
1

2
x−1/2 =

1

2
√
x
> 0

for x > 0, so f is increasing on the interval (0,∞) .

(b) Because f is increasing on the interval (0,∞) and is continuous for x ≥ 0,

f is increasing for all x ≥ 0 ; that is, f is increasing on its domain.

73. (a) Not necessarily true . Let f(x) = ex and g(x) = −1. Then f ′(x) = ex and g′(x) = 0

exist and f ′(x) > g′(x) for all real x; however, the graphs of y = f(x) and y = g(x)
never intersect because f(x) > 0 for all real x.

(b) True . Suppose for sake of contradiction that the graphs of y = f(x) and y = g(x)
intersect more than once. In particular, suppose the graphs intersect at a and b with
a < b. Consider the function h(x) = f(x)−g(x). The functions f and g are continuous
and differentiable everywhere, so the function h is also continuous and differentiable
everywhere. Additionally,

h(a) = f(a)− g(a) = 0 and h(b) = f(b)− g(b) = 0,
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so h(a) = h(b), and Rolle’s Theorem applies. It follows that there exists at least one
c in (a, b) such that h′(c) = f ′(c) − g′(c) = 0; equivalently, f ′(c) = g′(c), in violation
of the condition that f ′(x) > g′(x) for all real x. Therefore, the graphs of y = f(x)
and y = g(x) can intersect no more than once.

(c) Not necessarily true . Let f(x) = 2x and g(x) = x. Then f ′(x) = 2 and g′(x) = 1

exist and f ′(x) > g′(x) for all real x; however, the graphs of y = f(x) and y = g(x)
intersect at the origin.

(d) False . See the proof for part (b).

(e) False . Even if the graphs intersect, the tangent lines will be different because the
condition f ′(x) > g′(x) guarantees that the tangent lines will have different slopes.

75. Consider the function f(x) =
ex

x2
for x > 0. Now,

f ′(x) =
x2ex − ex(2x)

x4
=
ex(x − 2)

x3
,

so the only critical number on x > 0 is 2. The Increasing/Decreasing Function Test states
that f is increasing on intervals where f ′(x) > 0 and that f is decreasing on intervals
where f ′(x) < 0. These inequalities are solved by using the critical number 2 to form two
intervals. The sign of f ′(x) is then determined on each interval, as shown in the following
table.

Sign of Sign of Sign of Sign of
Interval ex x− 2 x3 f ′(x) Conclusion

(0, 2) + − + − f is decreasing
(2,∞) + + + + f is increasing

Because f is decreasing on the interval (0, 2) and increasing on the interval (2,∞), f must
have an absolute minimum at 2. Therefore,

f(x) =
ex

x2
≥ f(2) =

e2

4
≈ 1.847 > 1,

so that, for x > 0
ex

x2
> 1 or ex > x2.

77. For x > 1, lnx > 0. Next, consider the function f(x) = x − lnx for x > 1. Now,

f ′(x) = 1− 1

x
. For x > 1

1

x
< 1 so that 1− 1

x
> 0;

that is, f ′(x) > 0. Therefore, by the Increasing/Decreasing Function Test, f is increasing
for x > 1, so that f(x) > f(1) = 1− ln 1 = 1 > 0. Therefore, for x > 1

f(x) = x− lnx > 0 or x > lnx.

79. y = sin−1 x+ cos−1 x

y′ =
1√

1− x2
+

−1√
1− x2

= 0.
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Since y′ = 0 for all x, therefore y is a constant function, meaning that substituting any x
from the domain of all real numbers will generate the same value of y. That is, substituting
an arbitrary value such as x = 0 will generate a y-value that will be the same for any other
values of x. For x = 0,

y = sin−1 0 + cos−1 0

= 0 +
π

2

=
π

2
.

81. Let f be a function that is continuous on the closed interval [a, b] and differentiable on the
open interval (a, b). Further, suppose that f(x) = 0 for three different numbers in (a, b).
Let x1, x2, and x3 denote the three zeros with x1 < x2 < x3. Consider the interval [x1, x2].
Because [x1, x2] is contained in [a, b], f is continuous on the closed interval [x1, x2] and
differentiable on the open interval (x1, x2). Additionally, f(x1) = f(x2) = 0, so Rolle’s
Theorem applies and there exists at least one number c1 in (x1, x2) such that f ′(c1) = 0.
Next, consider the interval [x2, x3]. Because [x2, x3] is contained in [a, b], f is continuous
on the closed interval [x2, x3] and differentiable on the open interval (x2, x3). Additionally,
f(x2) = f(x3) = 0, so Rolle’s Theorem applies and there exists at least one number c2 in
(x2, x3) such that f ′(c2) = 0. By construction, c1 < x2 and c2 > x2, so c1 cannot be equal
to c2. Therefore, there are at least two numbers in (a, b) at which f ′(x) = 0.

83. Suppose, for sake of contradiction, that f has an absolute extreme value on (a, b), say at
c. Because c is in (a, b) – and, in particular, not at an endpoint of the interval – f(c)
must also be a local extreme value. Now, local extreme values can only occur at critical
numbers. It follows that f ′(c) must be equal to zero or not exist. However, f ′(x) exists
and is never equal to 0 for x in (a, b). Therefore, f cannot have an extreme value on (a, b).

Challenge Problems

85. Let a, b, c, and d be real numbers and consider the function f(x) = ax3 + bx2 + cx + d.
This polynomial function is differentiable everywhere, so the critical numbers of f occur
where f ′(x) = 0. Now,

f ′(x) = 3ax2 + 2bx+ c.

The discriminant of this quadratic function is (2b)2 − 4(3a)(c) = 4(b2 − 3ac). Consider the
following cases:

• Case I: b2 − 3ac < 0: In this case, f ′(x) is never equal to zero and is always positive
when a > 0 and always negative when a < 0. Therefore, f is increasing for all x when
a > 0 and decreasing for all x when a < 0.

• Case II: b2−3ac = 0: In this case, f ′(x) = 0 when x = − b

3a
. For all other x, f ′(x) > 0

when a > 0 and f ′(x) < 0 when a < 0. Therefore, f is increasing for all x 6= − b

3a

when a > 0 and decreasing for all x 6= − b

3a
when a < 0. Because f is continuous on

its domain, we can say f is increasing for all x when a > 0 and decreasing for all x
when a < 0.

• Case III: b2 − 3ac > 0: In this case, f ′(x) = 0 when

x =
−b±

√
b2 − 3ac

3a
.

For notation, let

x1 = min

(

−b±
√
b2 − 3ac

3a

)

and x2 = max

(

−b±
√
b2 − 3ac

3a

)

.
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If a > 0, then f ′(x) > 0 and f is increasing on the intervals (−∞, x1) and (x2,∞)
and f ′(x) < 0 and f is decreasing on the interval (x1, x2). If a < 0, then f ′(x) > 0
and f is increasing on the interval (x1, x2) and f

′(x) < 0 and f is decreasing on the
intervals (−∞, x1) and (x2,∞).

87. Let f(x) = xn+ax+b, where n is a positive odd integer. Suppose, for sake of contradiction,
that f has more than three distinct real zeros. Let x1, x2, x3, and x4, with x1 < x2 <
x3 < x4, denote four of the distinct real zeros of f . Consider the interval [x1, x2]. The
polynomial function f is continuous and differentiable everywhere, so it is continuous on
the closed interval [x1, x2] and differentiable on the open interval (x1, x2). Additionally,
f(x1) = f(x2) = 0, so Rolle’s Theorem applies and there exists at least one number c1
in (x1, x2) such that f ′(c1) = 0. Next, consider the interval [x2, x3]. Following the same
reasoning as above, f is continuous on the closed interval [x2, x3] and differentiable on
the open interval (x2, x3). Additionally, f(x2) = f(x3) = 0, so Rolle’s Theorem applies
and there exists at least one number c2 in (x2, x3) such that f ′(c2) = 0. Finally, consider
the interval [x3, x4]. Following the same reasoning as above, f is continuous on the closed
interval [x3, x4] and differentiable on the open interval (x3, x4). Additionally, f(x3) =
f(x4) = 0, so Rolle’s Theorem applies and there exists at least one number c3 in (x3, x4)
such that f ′(c3) = 0. It follows that there are at least three distinct numbers in (a, b) at
which f ′(x) = 0. However, f ′(x) = nxn−1 + a, which has only at most two distinct real
zeros because n is an odd integer, so n − 1 is an even integer. Therefore, the function
f(x) = xn+ ax+ b, where n is a positive odd integer, has at most three distinct real zeros.

89. Let f(x) = xn + ax2 + b, where n is a positive even integer. Suppose, for sake of contra-
diction, that f has more than four distinct real zeros. Let x1, x2, x3, x4, and x5, with
x1 < x2 < x3 < x4 < x5, denote five of the distinct real zeros of f . Consider the interval
[x1, x2]. The polynomial function f is continuous and differentiable everywhere, so it is con-
tinuous on the closed interval [x1, x2] and differentiable on the open interval (x1, x2). Addi-
tionally, f(x1) = f(x2) = 0, so Rolle’s Theorem applies and there exists at least one number
c1 in (x1, x2) such that f ′(c1) = 0. By similar reasoning, there exists at least one number
c2 in (x2, x3), at least one number c3 in (x3, x4), and at least one number c4 in (x4, x5)
such that f ′(c2) = f ′(c3) = f ′(c4) = 0. However, f ′(x) = nxn−1 + 2ax = x(nxn−2 + 2a),
which has at most three distinct real zeros because n is an even integer, so n − 2 is also
an even integer. Therefore, the function f(x) = xn + ax2 + b, where n is a positive even
integer, has at most four distinct real zeros.

91. Let a, b, c, and d be real numbers with ad− bc 6= 0. Additionally, let n ≥ 2 be an integer.

Consider the function f(x) =
axn + b

cxn + d
. The rational function f is differentiable on its

domain, so the critical numbers of f occur where f ′(x) = 0. Now,

f ′(x) =
(cxn + d)(anxn−1)− (axn + b)(cnxn−1)

(cxn + d)2

=
acnx2n−1 + adnxn−1 − acnx2n−1 − bcnxn−1

(cxn + d)2
=

(ad− bc)nxn−1

(cxn + d)2
,

so 0 is the only critical number . Suppose that n is odd, so that n−1 is even. If ad−bc > 0,

then f ′(x) > 0 and f is increasing everywhere on the domain of f except at x = 0. Because
f is continuous on its domain, we can say that f is increasing on its domain. If ad−bc < 0,
then f ′(x) < 0 and f is decreasing everywhere on the domain of f except at x = 0. Because
f is continuous on its domain, we can say that f is decreasing on its domain. On the other
hand, suppose that n is even, so that n − 1 is odd. If ad − bc > 0, then f ′(x) > 0 and
f is increasing on that portion of the domain of f where x > 0, while f ′(x) < 0 and f is
decreasing on that portion of the domain of f where x < 0. If ad− bc < 0, then f ′(x) > 0
and f is increasing on that portion of the domain of f where x < 0, while f ′(x) < 0 and
f is decreasing on that portion of the domain of f where x > 0.

93. Let a and b be real numbers with 0 < a < b and consider the function f(x) = lnx on
the interval [a, b]. The natural logarithm function is continuous and differentiable on its
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domain, so it is continuous on the closed interval [a, b] and differentiable on the open
interval (a, b). By the Mean Value Theorem, there exists a number c in (a, b) for which

f ′(c) =
f(b)− f(a)

b− a
=

ln b− ln a

b− a
=

1

b− a
ln
b

a
.

Now,

f ′(x) =
1

x
so f ′(c) =

1

c
.

With a < c < b, it follows that

1

b
<

1

c
= f ′(c) <

1

a
,

so, substituting for f ′(c) from the Mean Value Theorem,

1

b
<

1

b− a
ln
b

a
<

1

a
.

Taking the reciprocal of each component of this compound inequality and then multiplying
by ln(b/a), which is positive because b > a so that b/a > 1, yields

a ln
b

a
< b− a < b ln

b

a
.

95. This is because the ranges of cot−1 and tan−1 are the same on the domain x > 0 but
different on the domain x < 0.

For x > 0 (which also means that 1
x > 0), both cot−1 x and tan−1 1

x have the range
(

0, π2
)

.
Then, as shown in Section 3.3 Problem 58, they are equal.

But for x < 0 (which also means that 1
x < 0), cot−1 x has the range

(

π
2 , π

)

but tan−1 1
x

has the range
(

−π
2 , 0
)

. However, tan−1 1
x + π has the range

(

−π
2 + π, 0 + π

)

=
(

π
2 , π

)

. So

cot−1 x and tan−1 1
x + π have the same range and, as above, are equal.

AP
R©

Practice Problems

1. f is continuous on the closed interval [−2, 5] and differentiable on the open interval (−2, 5).
The function f therefore satisfies the conditions of the Mean Value Theorem on the interval
[−2, 5], which guarantees that there is at least one number c in (−2, 5), for which f ′(c) =
f(5)−f(−2)

5−(−2) = 3−3
7 = 0.

Since f is continuous and differentiable it could be a horizontal line from the point (−2, 3)
to (5, 3), in which case f ′(c) = 0 for all c in (−2, 5) so B and C are false, and f(c) = 3 for
all c in (−2, 5) so A is false.

A second option would be that f increases from (−2, 3), but then it would have to decrease
in some interval in order to pass through (5, 3).

A third option would be that f decreases from (−2, 3), but then it would have to increase
in some interval in order to pass through (5, 3).

For either the second or third option there could be a number c in the interval (−2, 5) for
which f(c) = 0 and A is true, but it is not necessary.

Because f must both increase and decrease in the second or third options, choices B and
C are not possible.

CHOICE D
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3. f(x) =
√
x = x1/2, which is defined for x ≥ 0.

f ′(x) =
1

2
x−1/2 =

1

2x1/2
, so f(x) is differentiable for x ≥ 0.

Since f(x) is differentiable on x > 0, it is continuous on (0, 4). Also, f is continuous at its
endpoints (0, 0) and (4, 2) since lim

x→0+
f(x) = f(0) = 0 and lim

x→4−
f(x) = f(4) = 2.

Therefore, the conditions for the Mean Value Theorem are satisfied, so there is at least one
number c in (0, 4), such that f ′(c) = the slope of the line between (0, 0) and (4, 2).

f ′(c) =
f(4)− f(0)

4− 0
1

2c1/2
=

2− 0

4

=
1

2

c = 1 .

CHOICE C

5. f(x) = x4 − 4x3 + 4x2 + 1 is decreasing on the interval(s) where f ′(x) is negative.

We determine the possible interval(s) where f(x) is decreasing by setting f ′(x) = 0 and
solving for x, the endpoints of the intervals to be evaluated.

f ′(x) = 0

4x
(

x2 − 3x+ 2
)

= 0

4x(x− 1)(x− 2) = 0

x = 0, x = 1, or x = 2

Interval Sign of x Sign of x− 1 Sign of x− 2 Sign of f ′(x) = 4x3 − 12x2 + 8x Conclusion

(−∞, 0) − − − − Decreasing
(0, 1) + − − + Increasing
(1, 2) + + − − Decreasing
(2,∞) + + + + Increasing

Therefore, f is decreasing on the intervals (−∞, 0] and [1, 2] .

CHOICE A

7. h(x) = f(x)g(x)

By the Product Rule, h′(x) = f ′(x)g(x) + g′(x)f(x)

But, by the given, h′(x) = f ′(x)g(x)

Therefore

f ′(x)g(x) + g′(x)f(x) = f ′(x)g(x)

g′(x)f(x) = 0

g′(x) = 0 since f ′(x) 6= 0 since f ′(x) > 0, by the given.

Since g′(x) = 0 for all real numbers x, therefore g(x) is a constant function (a horizontal
line).
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Since g(0) = 4, therefore g(x) = 4 for all real numbers x.

CHOICE D

9. An object in rectilinear motion is at rest when v(t) = x′(t) = 0.

For x(t) = t3 + 3
2 t

2 − 18t+ 4, x′(t) = 3t2 + 3t− 18.

So

x′(t) = 0

3t2 + 3t− 18 = 0

3(t+ 3)(t− 2) = 0

t = −3 or t = 2

The only one of those which is in the domain, t ≥ 0, is t = 2 .

CHOICE B

4.4 Local Extrema and Concavity

Concepts and Vocabulary

1. False . If a function f is continuous on the interval [a, b], differentiable on the interval (a, b),
and changes from an increasing function to a decreasing function at the point (c, f(c)), then
f(c) is a local maximum value of f .

3. Suppose a function f is continuous on a closed interval [a, b] and differentiable on the open
interval (a, b). If the graph of f lies above each of its tangent lines on the interval (a, b),

then f is (a) concave up on (a, b).

5. Suppose f is a function that is differentiable on an open interval containing c and the

concavity of f changes at the point (c, f(c)). Then (c, f(c)) is an (a) inflection point

of f .

7. True . Suppose f is a function for which f ′ and f ′′ exist on an open interval (a, b) and
suppose c, a < c < b, is a critical number of f . If f ′′(c) = 0, then the Second Derivative
Test cannot be used to determine if there is a local extremum at c.

Skill Building

9. (a) Based on the graph of f , f has

• a local maximum value at the point (−1, 0) ,

• a local minimum value at the points (−2.5,−4) and (0.5,−4) , and

• a point of inflection at the points (−1.8,−2) and (−0.2,−2) .

(b) Based on the graph of f , f is increasing on the intervals (−2.5,−1) and (0.5,∞) and
decreasing on the intervals (−∞,−2.5) and (−1, 0.5). Since f is continuous on its
domain, we can say that f is

• increasing on the intervals [−2.5,−1] and [0.5,∞) and

• decreasing on the intervals (−∞,−2.5] and [−1, 0.5] .
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Additionally, f is

• concave up on the intervals (−∞,−1.8) and (−0.2,∞) , and

• concave down on the interval (−1.8,−0.2) .

11. (a) Based on the graph of f , f has

• a local maximum value at the points (−2, 3) and (12, 10) ,

• a local minimum value at the point (0, 0) , and

• no points of inflection .

(b) Based on the graph of f , f is increasing on the intervals (−∞,−2) and (0, 12) and
decreasing on the intervals (−2, 0) and (12,∞). Since f is continuous on its domain,
we can say that f is

• increasing on the intervals (−∞,−2] and [0, 12] and

• decreasing on the intervals [−2, 0] and [12,∞) .

Additionally, f is concave down on the intervals (−∞, 0) and (0,∞) . The function

is never concave up.

13. Let f(x) = x3 − 6x2 + 2.

(a) The polynomial function f is differentiable everywhere, so the critical numbers of f
occur where f ′(x) = 0. Now,

f ′(x) = 3x2 − 12x = 3x(x− 4),

so 0 and 4 are critical numbers.

(b) The Increasing/Decreasing Function Test states that f is increasing on intervals where
f ′(x) > 0 and that f is decreasing on intervals where f ′(x) < 0. These inequalities
are solved by using the critical numbers 0 and 4 to form three intervals. The sign of
f ′(x) is then determined on each interval, as shown in the following table.

Sign of Sign of Sign of
Interval 3x x− 4 f ′(x) Conclusion

(−∞, 0) − − + f is increasing
(0, 4) + − − f is decreasing
(4,∞) + + + f is increasing

Therefore, by the First Derivative Test, f has a local maximum value at 0 and a local

minimum value at 4. The local maximum value is f(0) = 2 ; the

local minimum value is f(4) = −30 .

15. Let f(x) = 3x4 − 4x3.

(a) The polynomial function f is differentiable everywhere, so the critical numbers of f
occur where f ′(x) = 0. Now,

f ′(x) = 12x3 − 12x2 = 12x2(x− 1),

so 0 and 1 are critical numbers.
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(b) The Increasing/Decreasing Function Test states that f is increasing on intervals where
f ′(x) > 0 and that f is decreasing on intervals where f ′(x) < 0. These inequalities
are solved by using the critical numbers 0 and 1 to form three intervals. The sign of
f ′(x) is then determined on each interval, as shown in the following table.

Sign of Sign of Sign of
Interval 12x2 x− 1 f ′(x) Conclusion

(−∞, 0) + − − f is decreasing
(0, 1) + − − f is decreasing
(1,∞) + + + f is increasing

Therefore, by the First Derivative Test, f has neither a local maximum value nor a
local minimum value at 0 and a local minimum value at 1. The
local minimum value is f(1) = −1 .

17. Let f(x) = (5− 2x)ex.

(a) The function f is differentiable everywhere, so the critical numbers of f occur where
f ′(x) = 0. Now,

f ′(x) = (5− 2x)ex − 2ex = (3− 2x)ex,

so
3

2
is the only critical number.

(b) The Increasing/Decreasing Function Test states that f is increasing on intervals where
f ′(x) > 0 and that f is decreasing on intervals where f ′(x) < 0. These inequalities

are solved by using the critical number
3

2
to form two intervals. The sign of f ′(x) is

then determined on each interval, as shown in the following table.

Sign of Sign of Sign of
Interval 3− 2x ex f ′(x) Conclusion
(

−∞, 32
)

+ + + f is increasing
(

3
2 ,∞

)

− + − f is decreasing

Therefore, by the First Derivative Test, f has a local maximum value at
3

2
. The

local maximum value is f

(

3

2

)

= 2e3/2 .

19. Let f(x) = x2/3 + x1/3.

(a) The critical numbers of f occur where f ′(x) = 0 or where f ′(x) does not exist. Now,

f ′(x) =
2

3
x−1/3 +

1

3
x−2/3 =

2x1/3 + 1

3x2/3
,

so f ′(x) = 0 when x = −1

8
and f ′(x) does not exist when x = 0. Therefore,

−1

8
and 0 are the critical numbers of f .

(b) The Increasing/Decreasing Function Test states that f is increasing on intervals where
f ′(x) > 0 and that f is decreasing on intervals where f ′(x) < 0. These inequalities

are solved by using the critical numbers −1

8
and 0 to form three intervals. The sign

of f ′(x) is then determined on each interval, as shown in the following table.
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Sign of Sign of Sign of
Interval 2x1/3 + 1 3x2/3 f ′(x) Conclusion
(

−∞,− 1
8

)

− + − f is decreasing
(

− 1
8 , 0
)

+ + + f is increasing
(0,∞) + + + f is increasing

Therefore, by the First Derivative Test, f has a local minimum value at −1

8
but has

neither a local maximum value nor a local minimum value at 0. The

local minimum value is f

(

−1

8

)

= −1

4
.

21. Let g(x) = x2/3(x2 − 4).

(a) The critical numbers of g occur where g′(x) = 0 or where g′(x) does not exist. Now,

g′(x) = x2/3(2x) +
2

3
x−1/3(x2 − 4) =

6x2 + 2(x2 − 4)

3x1/3
=

8(x− 1)(x+ 1)

3x1/3
,

so g′(x) = 0 when x = ±1 and g′(x) does not exist when x = 0. Therefore,

−1, 0, and 1 are the critical numbers of g.

(b) The Increasing/Decreasing Function Test states that g is increasing on intervals where
g′(x) > 0 and that g is decreasing on intervals where g′(x) < 0. These inequalities
are solved by using the critical numbers −1, 0, and 1 to form four intervals. The sign
of g′(x) is then determined on each interval, as shown in the following table.

Sign of Sign of Sign of Sign of
Interval 8(x− 1) x+ 1 3x1/3 g′(x) Conclusion

(−∞,−1) − − − − g is decreasing
(−1, 0) − + − + g is increasing
(0, 1) − + + − g is decreasing
(1,∞) + + + + g is increasing

Therefore, by the First Derivative Test, g has a local minimum value at −1, a local
maximum value at 0, and a local minimum value at 1. The

local minimum values are g(−1) = −3 and g(1) = −3 , and the

local maximum value is g(0) = 0 .

23. Let f(x) =
lnx

x3
.

(a) The function f is differentiable on its domain, the set {x|x > 0}, so the critical
numbers of f occur where f ′(x) = 0. Now,

f ′(x) =
x3 · 1

x − 3x2 lnx

x6
=

1− 3 lnx

x4
,

so f ′(x) = 0 when x = 3
√
e. Therefore, 3

√
e is the only critical number of f .

(b) The Increasing/Decreasing Function Test states that f is increasing on intervals where
f ′(x) > 0 and that f is decreasing on intervals where f ′(x) < 0. These inequalities
are solved by using the critical number 3

√
e to form two intervals. The sign of f ′(x) is

then determined on each interval, as shown in the following table.
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Sign of Sign of Sign of
Interval 1− 3 lnx x4 f ′(x) Conclusion

(0, 3
√
e) + + + f is increasing

( 3
√
e,∞) − + − f is decreasing

Therefore, by the First Derivative Test, f has a local maximum value at 3
√
e. The

local maximum value is f( 3
√
e) =

1

3e
.

25. Let f(θ) = sin θ − 2 cos θ.

(a) The function f is the difference of the trigonometric function sinx and a constant
multiple of the trigonometric function cosx, so it is differentiable everywhere. The
critical numbers of f therefore occur where f ′(θ) = 0. Now,

f ′(θ) = cos θ + 2 sin θ,

so f ′(θ) = 0 when cos θ = −2 sin θ or tan θ = −1

2
. It follows that the critical numbers

of f are − tan−1 1

2
+ kπ , where k is any integer. Remember that the tangent function

is periodic with period π.

(b) The Increasing/Decreasing Function Test states that f is increasing on intervals where
f ′(θ) > 0 and that f is decreasing on intervals where f ′(θ) < 0. The critical numbers
of f divide the number line into intervals of the form

(

− tan−1 1

2
+ 2kπ,− tan−1 1

2
+ (2k + 1)π

)

and
(

− tan−1 1

2
+ (2k + 1)π,− tan−1 1

2
+ (2k + 2)π

)

for each integer k. Select a test number in each interval and evaluate f ′ at that
number. If f ′(θ) < 0 at the test number, then f ′(θ) < 0 throughout the interval; if
f ′(θ) > 0 at the test number, then f ′(θ) > 0 throughout the interval. The following
table summarizes the results:

Test Value of f ′(θ) Sign of
Interval Number at Test Number f ′(θ) Conclusion

(

− tan−1 1

2
+ 2kπ,− tan−1 1

2
+ (2k + 1)π

)

2kπ 1 + f is increasing
(

− tan−1 1

2
+ (2k + 1)π,− tan−1 1

2
+ (2k + 2)π

)

(2k + 1)π −1 − f is decreasing

Therefore, f is increasing on the intervals

(

− tan−1 1

2
+ 2kπ,− tan−1 1

2
+ (2k + 1)π

)

and decreasing on the intervals

(

− tan−1 1

2
+ (2k + 1)π,− tan−1 1

2
+ (2k + 2)π

)

. By

the First Derivative Test, it follows that f has a local maximum value at all points of

the form − tan−1 1

2
+ (2k + 1)π and a local minimum value at all points of the form

− tan−1 1

2
+ 2kπ. The local maximum values are

f

(

− tan−1 1

2
+ (2k + 1)π

)

= sin

(

− tan−1 1

2
+ (2k + 1)π

)

− 2 cos

(

− tan−1 1

2
+ (2k + 1)π

)

= sin

(

tan−1 1

2

)

+ 2 cos

(

tan−1 1

2

)

=
1
√

5
+ 2

2
√

5
=

5
√

5
=

√

5 ,
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and the local minimum values are

f

(

− tan−1 1

2
+ 2kπ

)

= sin

(

− tan−1 1

2
+ 2kπ

)

− 2 cos

(

− tan−1 1

2
+ 2kπ

)

= − sin

(

tan−1 1

2

)

− 2 cos

(

tan−1 1

2

)

= −
1
√

5
− 2

2
√

5
= −

5
√

5
= −

√

5 .

27. Let s = t2 − 2t+ 3.

(a) The object moves to the right when v(t) = s′(t) > 0 and moves to the left when
v(t) = s′(t) < 0. Now,

v(t) = s′(t) = 2t− 2 = 2(t− 1),

so 1 is the only critical number of s. When t < 1, v(t) < 0 and when t > 1, v(t) > 0.

Therefore, the object moves to the right on the interval (1,∞) and moves to the

left on the interval (0, 1) .

(b) The object reverses direction at t = 1 .

(c) The velocity of the object is increasing when a(t) = v′(t) > 0 and is decreasing when
a(t) = v′(t) < 0. Now

a(t) = v′(t) = 2 > 0

for all t ≥ 0. Therefore, the velocity is increasing on the interval (0,∞) .

(d) The figure below illustrates the motion of the object.

1 2 3 4

t = 1

t = 0

t = 2

s

(e) The figure below illustrates the velocity of the object.

-2 -1 1 2 3

t = 0 t = 1 t = 2

v

29. Let s = 2t3 + 6t2 − 18t+ 1.

(a) The object moves to the right when v(t) = s′(t) > 0 and moves to the left when
v(t) = s′(t) < 0. Now,

v(t) = s′(t) = 6t2 + 12t− 18 = 6(t2 + 2t− 3) = 6(t+ 3)(t− 1).

As the domain of s is the set {t|t ≥ 0} and −3 is not in this domain, −3 is not a critical
number. When t < 1, v(t) < 0 and when t > 1, v(t) > 0. Therefore, the object moves

to the right on the interval (1,∞) and moves to the left on the interval (0, 1) .

(b) The object reverses direction at t = 1 .

(c) The velocity of the object is increasing when a(t) = v′(t) > 0 and is decreasing when
a(t) = v′(t) < 0. Now

a(t) = v′(t) = 12t+ 12 = 12(t+ 1) > 0

for all t ≥ 0. Therefore, the velocity is increasing on the interval (0,∞) .
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(d) The figure below illustrates the motion of the object.

-10 -5 5 10

t = 0

t = 1

t = 2

s

(e) The figure below illustrates the velocity of the object.

-20 -10 10 20 30 40

t = 0 t = 1 t = 2

v

31. Let s = 2t− 6

t
.

(a) The object moves to the right when v(t) = s′(t) > 0 and moves to the left when
v(t) = s′(t) < 0. Now,

v(t) = s′(t) = 2 +
6

t2
> 0

for all t > 0. Therefore, the object is moving to the right on the interval (0,∞) .

(b) The object does not reverse direction .

(c) The velocity of the object is increasing when a(t) = v′(t) > 0 and is decreasing when
a(t) = v′(t) < 0. Now

a(t) = v′(t) = −12

t3
< 0

for all t > 0. Therefore, the velocity of the object is decreasing on the interval (0,∞) .

(d) The figure below illustrates the motion of the object.

-10 -5 5 10

t = 1 t = 2t –› 0
+

s

(e) The figure below illustrates the velocity of the object.

2 4 6 8 10

t = 1 t –› 0
+

v

33. Let s = 2 sin(3t) for 0 ≤ t ≤ 2π

3
.

(a) The object moves to the right when v(t) = s′(t) > 0 and moves to the left when
v(t) = s′(t) < 0. Now,

v(t) = s′(t) = 6 cos(3t).

When 0 < t <
π

6
, v(t) > 0; when

π

6
< t <

π

2
, v(t) < 0; and when

π

2
< t <

2π

3
, v(t) >

0. Therefore, the object is moving to the right on the intervals
(

0,
π

6

)

and

(

π

2
,
2π

3

)

and is moving to the left on the interval
(π

6
,
π

2

)

.
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(b) The object reverses direction at t =
π

6
and t =

π

2
.

(c) The velocity of the object is increasing when a(t) = v′(t) > 0 and is decreasing when
a(t) = v′(t) < 0. Now,

a(t) = v′(t) = −18 sin(3t).

When 0 < t <
π

3
, a(t) < 0, and when

π

3
< t <

2π

3
, a(t) > 0. Therefore, the velocity of

the object is decreasing on the interval
(

0,
π

3

)

and is increasing on the interval

(

π

3
,
2π

3

)

.

(d) The figure below illustrates the motion of the object.

-2 -1 1 2

t = 0

t = /6
t = /3

t = /2

t = 2 /3

s

(e) The figure below illustrates the velocity of the object.

-6 -4 -2 2 4 6

t = 0t = /6

t = /3

t = /2 t = 2 /3

v

35. (a) 0, 1

(b) [0,∞)

(c) (−∞, 0]

(d) 0

(e) none

37. (a) −3, 0, 1

(b) (−∞,−3], [1,∞)

(c) [−3, 1]

(d) 1

(e) −3

39. Let f(x) = 2x3 − 6x2 + 6x− 3.

(a) The polynomial function f is differentiable everywhere, so the critical numbers of f
occur where f ′(x) = 0. Now,

f ′(x) = 6x2 − 12x+ 6 = 6(x2 − 2x+ 1) = 6(x− 1)2,

so 1 is a critical number of f . For x 6= 1, f ′(x) > 0, so that f is increasing on
the intervals (−∞, 1) and (1,∞). By the First Derivative Test, it follows that f
has neither a local maximum value nor a local minimum value at 1. Hence, f has

no local extrema .
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(b) The function f is concave up where f ′′(x) > 0 and concave down where f ′′(x) < 0.
Now,

f ′′(x) = 12x− 12 = 12(x− 1).

For x < 1, f ′′(x) < 0, and for x > 1, f ′′(x) > 0. Therefore, f is

concave down on the interval (−∞, 1) and concave up on the interval (1,∞) .

(c) Because the concavity of f changes at 1, the point (1, f(1)) = (1,−1) is a point of

inflection of f .

41. Let f(x) = x4 − 4x.

(a) The polynomial function f is differentiable everywhere, so the critical numbers of f
occur where f ′(x) = 0. Now,

f ′(x) = 4x3 − 4 = 4(x3 − 1) = 4(x− 1)(x2 + x+ 1),

so 1 is a critical number of f . For x < 1, f ′(x) < 0, so f is decreasing on the
interval (−∞, 1); for x > 1, f ′(x) > 0, so f is increasing on the interval (1,∞). By
the First Derivative Test, it follows that f has a local minimum value at 1. The

local minimum value is f(1) = −3 .

(b) The function f is concave up where f ′′(x) > 0 and concave down where f ′′(x) < 0.
Now,

f ′′(x) = 12x2,

so f ′′(x) > 0 for x 6= 0. Therefore, f is concave up on the intervals (−∞, 0) and (0,∞) .

(c) Because the concavity of f never changes, f has no points of inflection .

43. Let f(x) = 5x4 − x5.

(a) The polynomial function f is differentiable everywhere, so the critical numbers of f
occur where f ′(x) = 0. Now,

f ′(x) = 20x3 − 5x4 = 5x3(4− x),

so 0 and 4 are critical numbers of f . To determine where f ′(x) > 0 and f ′(x) < 0,
use the numbers 0 and 4 to divide the number line into three intervals. The sign of
f ′(x) is then determined on each interval, as shown in the following table.

Sign of Sign of Sign of
Interval 5x3 4− x f ′(x) Conclusion

(−∞, 0) − + − f is decreasing
(0, 4) + + + f is increasing
(4,∞) + − − f is decreasing

Therefore, f is decreasing on the intervals (−∞, 0) and (4,∞) and increasing on the
interval (0, 4). By the First Derivative Test, it follows that f has a local minimum

value at 0 and a local maximum value at 4. The local minimum value is f(0) = 0 ,

and the local maximum value is f(4) = 256 .

(b) The function f is concave up where f ′′(x) > 0 and concave down where f ′′(x) < 0.
Now,

f ′′(x) = 60x2 − 20x3 = 20x2(3− x),

so f ′′(x) = 0 when x = 0 and when x = 3. To determine where f ′′(x) > 0 and
f ′′(x) < 0, use the numbers 0 and 3 to divide the number line into three intervals.
The sign of f ′′(x) is then determined on each interval, as shown in the following table.
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Sign of Sign of Sign of
Interval 20x2 3− x f ′′(x) Conclusion

(−∞, 0) + + + f is concave up
(0, 3) + + + f is concave up
(3,∞) + − − f is concave down

Therefore, f is concave up on the intervals (−∞, 0) and (0, 3) and

concave down on the interval (3,∞) .

(c) Because the concavity of f changes at 3, the point (3, f(3)) = (3, 162) is a point of

inflection of f .

45. Let f(x) = 3x5 − 20x3.

(a) The polynomial function f is differentiable everywhere, so the critical numbers of f
occur where f ′(x) = 0. Now,

f ′(x) = 15x4 − 60x2 = 15x2(x2 − 4) = 15x2(x − 2)(x+ 2),

so −2, 0, and 2 are critical numbers of f . To determine where f ′(x) > 0 and f ′(x) < 0,
use the numbers −2, 0, and 2 to divide the number line into four intervals. The sign
of f ′(x) is then determined on each interval, as shown in the following table.

Sign of Sign of Sign of Sign of
Interval 15x2 x− 2 x+ 2 f ′(x) Conclusion

(−∞,−2) + − − + f is increasing
(−2, 0) + − + − f is decreasing
(0, 2) + − + − f is decreasing
(2,∞) + + + + f is increasing

Therefore, f is increasing on the intervals (−∞,−2) and (2,∞) and decreasing on the
intervals (−2, 0) and (0, 2). By the First Derivative Test, it follows that f has a local
maximum value at −2, neither a local maximum value nor a local minimum value at

0, and a local minimum value at 2. The local maximum value is f(−2) = 64 , and

the local minimum value is f(2) = −64 .

(b) The function f is concave up where f ′′(x) > 0 and concave down where f ′′(x) < 0.
Now,

f ′′(x) = 60x3 − 120x = 60x(x2 − 2) = 60x(x−
√
2)(x+

√
2),

so f ′′(x) = 0 when x = ±
√
2 and when x = 0. To determine where f ′′(x) > 0 and

f ′′(x) < 0, use the numbers −
√
2, 0, and

√
2 to divide the number line into four

intervals. The sign of f ′′(x) is then determined on each interval, as shown in the
following table.

Sign of Sign of Sign of Sign of
Interval 60x x−

√
2 x+

√
2 f ′′(x) Conclusion

(

−∞,−
√
2
)

− − − − f is concave down

(−
√
2, 0) − − + + f is concave up

(

0,
√
2
)

+ − + − f is concave down
(√

2,∞
)

+ + + + f is concave up

Therefore, f is concave up on the intervals (−
√
2, 0) and (

√
2,∞) and

concave down on the intervals (−∞,−
√
2) and (0,

√
2) .
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(c) Because the concavity of f changes at −
√
2, 0, and

√
2, the points

(−
√
2, f(−

√
2)) = (−

√
2, 28

√
2) , (0, f(0)) = (0, 0) , and

(
√
2, f(

√
2)) = (

√
2,−28

√
2) are points of inflection of f .

47. Let f(x) = x2ex.

(a) The function f is differentiable everywhere, so the critical numbers of f occur where
f ′(x) = 0. Now,

f ′(x) = x2ex + 2xex = xex(x+ 2),

so −2 and 0 are critical numbers of f . To determine where f ′(x) > 0 and f ′(x) < 0,
use the numbers −2 and 0 to divide the number line into three intervals. The sign of
f ′(x) is then determined on each interval, as shown in the following table.

Sign of Sign of Sign of
Interval xex x+ 2 f ′(x) Conclusion

(−∞,−2) − − + f is increasing
(−2, 0) − + − f is decreasing
(0,∞) + + + f is increasing

Therefore, f is increasing on the intervals (−∞,−2) and (0,∞) and decreasing on the
interval (−2, 0). By the First Derivative Test, it follows that f has a local maximum

value at−2 and a local minimum value at 0. The local maximum value is f(−2) = 4e−2 ,

and the local minimum value is f(0) = 0 .

(b) The function f is concave up where f ′′(x) > 0 and concave down where f ′′(x) < 0.
Now,

f ′′(x) = (x2 + 2x)ex + (2x+ 2)ex = ex(x2 + 4x+ 2) = ex[(x+ 2)2 − 2],

so f ′′(x) = 0 when x = −2±
√
2. To determine where f ′′(x) > 0 and f ′′(x) < 0, use

the numbers −2−
√
2 and −2+

√
2 to divide the number line into three intervals. The

sign of f ′′(x) is then determined on each interval, as shown in the following table.

Sign of Sign of Sign of
Interval ex x2 + 4x+ 2 f ′′(x) Conclusion

(

−∞,−2−
√
2
)

+ + + f is concave up
(

−2−
√
2,−2 +

√
2
)

+ − − f is concave down
(

−2 +
√
2,∞

)

+ + + f is concave up

Therefore, f is concave up on the intervals (−∞,−2−
√
2) and (−2 +

√
2,∞) and

concave down on the interval (−2−
√
2,−2 +

√
2) .

(c) Because the concavity of f changes at −2−
√
2 and −2 +

√
2, the points

(−2−
√
2, f(−2−

√
2)) = (−2−

√
2, (6 + 4

√
2)e−2−

√
2)

and

(−2 +
√
2, f(−2 +

√
2)) = (−2 +

√
2, (6− 4

√
2)e−2+

√
2)

are points of inflection of f .
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49. Let f(x) = 6x4/3 − 3x1/3.

(a) The critical numbers of f occur where f ′(x) = 0 or where f ′(x) does not exist. Now,

f ′(x) = 8x1/3 − x−2/3 =
8x− 1

x2/3
,

so 0 and
1

8
are critical numbers. To determine where f ′(x) > 0 and f ′(x) < 0, use

the numbers 0 and
1

8
to divide the number line into three intervals. The sign of f ′(x)

is then determined on each interval, as shown in the following table.

Sign of Sign of Sign of
Interval 8x− 1 x2/3 f ′(x) Conclusion

(−∞, 0) − + − f is decreasing
(

0, 18
)

− + − f is decreasing
(

1
8 ,∞

)

+ + + f is increasing

Therefore, f is decreasing on the intervals (−∞, 0) and

(

0,
1

8

)

and increasing on

the interval

(

1

8
,∞
)

. By the First Derivative Test, f has neither a local maxi-

mum value nor a local minimum value at 0 and a local minimum value at
1

8
. The

local minimum value is f

(

1

8

)

= −9

8
.

(b) The function f is concave up where f ′′(x) > 0 and concave down where f ′′(x) < 0.
Now,

f ′′(x) =
8

3
x−2/3 +

2

3
x−5/3 =

8x+ 2

3x5/3
,

so f ′′(x) = 0 when x = −1

4
and f ′′(x) does not exist when x = 0. To determine

where f ′′(x) > 0 and f ′′(x) < 0, use the numbers −1

4
and 0 to divide the number line

into three intervals. The sign of f ′′(x) is then determined on each interval, as shown
in the following table.

Sign of Sign of Sign of
Interval 8x+ 2 3x5/3 f ′′(x) Conclusion
(

−∞,− 1
4

)

− − + f is concave up
(

− 1
4 , 0
)

+ − − f is concave down
(0,∞) + + + f is concave up

Therefore, f is concave up on the intervals

(

−∞,−1

4

)

and (0,∞) and

concave down on the interval

(

−1

4
, 0

)

.

(c) Because the concavity of f changes at−1

4
and 0, the points

(

−1

4
, f

(

−1

4

))

=

(

−1

4
,
9 3
√
2

4

)

and (0, f(0)) = (0, 0) are points of inflection of f .
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51. Let f(x) = x2/3(x2 − 8).

(a) The critical numbers of f occur where f ′(x) = 0 or where f ′(x) does not exist. Now,

f ′(x) = x2/3(2x) + (x2 − 8) · 2
3
x−1/3 =

6x2 + 2(x2 − 8)

3x1/3
=

8(x−
√
2)(x+

√
2)

3x1/3
,

so 0 and ±
√
2 are critical numbers of f . To determine where f ′(x) > 0 and f ′(x) < 0,

use the numbers 0 and ±
√
2 to divide the number line into four intervals. The sign

of f ′(x) is then determined on each interval, as shown in the following table.

Sign of Sign of Sign of Sign of
Interval 8(x−

√
2) x+

√
2 3x1/3 f ′(x) Conclusion

(

−∞,−
√
2
)

− − − − f is decreasing
(

−
√
2, 0
)

− + − + f is increasing

(0,
√
2) − + + − f is decreasing

(√
2,∞

)

+ + + + f is increasing

Therefore, f is decreasing on the intervals (−∞,−
√
2) and (0,

√
2) and increasing on

the intervals (−
√
2, 0) and (

√
2,∞). By the First Derivative Test, it follows that f

has local minimum values at −
√
2 and

√
2 and a local maximum value at 0. The

local minimum values are f(−
√
2) = −6 3

√
2 and f(

√
2) = −6 3

√
2 ,

and the local maximum value is f(0) = 0 .

(b) The function f is concave up where f ′′(x) > 0 and concave down where f ′′(x) < 0.
Now,

f ′′(x) =
3x1/3(16x)− 8(x2 − 2) · x−2/3

9x2/3
=

40x2 + 16

9x4/3
,

so f ′′(x) does not exist when x = 0 and is never equal to zero. For x 6= 0, f ′′(x) > 0,

so f is concave up on the intervals (−∞, 0) and (0,∞) .

(c) Because the concavity of f does not change, f has no points of inflection .

53. Let f(x) = x2 − lnx. Note that the domain of f is the set {x|x > 0}.

(a) The function f is differentiable on its domain, so critical numbers occur where f ′(x) =
0. Now,

f ′(x) = 2x− 1

x
=

2x2 − 1

x
,

so

√
2

2
is a critical number of f . For 0 < x <

√
2

2
, f ′(x) < 0, so f is decreasing on the

interval

(

0,

√
2

2

)

; for x >

√
2

2
, f ′(x) > 0, so f is increasing on the interval

(√
2

2
,∞
)

.

By the First Derivative Test, it follows that f has a local minimum value at

√
2

2
. The

local minimum value is f

(√
2

2

)

=
1

2
+

1

2
ln 2 .
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(b) The function f is concave up where f ′′(x) > 0 and concave down where f ′′(x) < 0.
Now,

f ′′(x) = 2 +
1

x2
> 2 > 0

for all x > 0. Therefore, f is concave up on the interval (0,∞) .

(c) Because the concavity of f does not change, f has no points of inflection .

55. Let f(x) =
x

(1 + x2)5/2
.

(a) The critical numbers of f occur where f ′(x) = 0 or where f ′(x) does not exist. Now,

f ′(x) =
(1 + x2)5/2 − x · 5

2 (1 + x2)3/2(2x)

(1 + x2)5
=

1− 4x2

(1 + x2)7/2
=

(1− 2x)(1 + 2x)

(1 + x2)7/2
,

so ±1

2
are critical numbers of f . To determine where f ′(x) > 0 and f ′(x) < 0, use

the numbers ±1

2
to divide the number line into three intervals. The sign of f ′(x) is

then determined on each interval, as shown in the following table.

Sign of Sign of Sign of Sign of
Interval 1− 2x 1 + 2x (1 + x2)7/2 f ′(x) Conclusion
(

−∞,− 1
2

)

+ − + − f is decreasing
(

− 1
2 ,

1
2

)

+ + + + f is increasing
(

1
2 ,∞

)

− + + − f is decreasing

Therefore, f is decreasing on the intervals

(

−∞,−1

2

)

and

(

1

2
,∞
)

and increasing

on the interval

(

−1

2
,
1

2

)

. By the First Derivative Test, it follows that f has a local

minimum value at −1

2
and a local maximum value at

1

2
. The

local minimum value is f

(

−1

2

)

= − 16

55/2
= −16

√
5

125
, and the

local maximum value is f

(

1

2

)

=
16

55/2
=

16
√
5

125
.

(b) The function f is concave up where f ′′(x) > 0 and concave down where f ′′(x) < 0.
Now,

f ′′(x) =
(1 + x2)7/2(−8x)− (1− 4x2) · 7

2 (1 + x2)5/2(2x)

(1 + x2)7

=
−8x− 8x3 − 7x+ 28x3

(1 + x2)9/2
=

5x(4x2 − 3)

(1 + x2)9/2
,

so f ′′(x) exists for all x and is equal to zero when x = 0 and when x = ±
√
3

2
. To

determine where f ′′(x) > 0 and f ′′(x) < 0, use the numbers 0 and ±
√
3

2
to divide the

number line into four intervals. The sign of f ′′(x) is then determined on each interval,
as shown in the following table.
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Sign of Sign of Sign of Sign of
Interval 5x 4x2 − 3 (1 + x2)9/2 f ′′(x) Conclusion

(

−∞,−
√
3
2

)

− + + − f is concave down
(

−
√
3
2 , 0

)

− − + + f is concave up
(

0,
√
3
2

)

+ − + − f is concave down
(√

3
2 ,∞

)

+ + + + f is concave up

Therefore, f is concave down on the intervals

(

−∞,−
√
3

2

)

and

(

0,

√
3

2

)

and

concave up on the intervals

(

−
√
3

2
, 0

)

and

(√
3

2
,∞
)

.

(c) Because the concavity of f changes at ±
√
3

2
and 0, the points

(

−
√
3

2
, f

(

−
√
3

2

))

=

(

−
√
3

2
,−16

√
3

75/2

)

,

(√
3

2
, f

(√
3

2

))

=

(√
3

2
,
16

√
3

75/2

)

,

and (0, f(0)) = (0, 0) are points of inflection of f .

57. Let f(x) = x2
√
1− x2. Note that the domain of f is the set {x| − 1 ≤ x ≤ 1}.

(a) The critical numbers of f occur where f ′(x) = 0 or where f ′(x) does not exist. Now,

f ′(x) = x2 · 1
2
(1 − x2)−1/2(−2x) + 2x

√

1− x2 =
−x3 + 2x− 2x3√

1− x2
=
x(2− 3x2)√

1− x2
,

so ±1, 0, and ±
√
6

3
are critical numbers of f . To determine where f ′(x) > 0 and

f ′(x) < 0, use the numbers ±1, 0, and ±
√
6

3
to divide [−1, 1] into four intervals. The

sign of f ′(x) is then determined on each interval, as shown in the following table.

Sign of Sign of Sign of Sign of
Interval x 2− 3x2

√
1− x2 f ′(x) Conclusion

(

−1,−
√
6
3

)

− − + + f is increasing
(

−
√
6
3 , 0

)

− + + − f is decreasing
(

0,
√
6
3

)

+ + + + f is increasing
(√

6
3 , 1

)

+ − + − f is decreasing
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Therefore, f is increasing on the intervals

(

−1,−
√
6

3

)

and

(

0,

√
6

3

)

and decreasing

on the intervals

(

−
√
6

3
, 0

)

and

(√
6

3
, 1

)

. By the First Derivative Test, it follows

that f has local maximum values at ±
√
6

3
and a local minimum value at 0. The

local maximum values are f

(

±
√
6

3

)

=
2
√
3

9
, and the local minimum value is f(0) = 0 .

(b) The function f is concave up where f ′′(x) > 0 and concave down where f ′′(x) < 0.
Now,

f ′′(x) =

√
1− x2(2− 9x2)− (2x− 3x3) · 1

2 (1 − x2)−1/2(−2x)

1− x2

=
(1− x2)(2 − 9x2) + x(2x − 3x3)

(1− x2)3/2
=

6x4 − 9x2 + 2

(1− x2)3/2
,

so f ′′(x) does not exist at x = ±1 and is equal to zero when

x2 =
9±

√

81− 4(6)(2)

12
=

9±
√
33

12
,

or when

x = ±

√

9±
√
33

12
= ±1

6

√

27± 3
√
33.

Note that

±1

6

√

27 + 3
√
33 ≈ ±1.108

are not in the domain of f and can be excluded. To determine where f ′′(x) > 0 and

f ′′(x) < 0, use the numbers ±1

6

√

27− 3
√
33 to divide [−1, 1] into three intervals. The

sign of f ′′(x) is then determined on each interval, as shown in the following table.

Sign of Sign of Sign of
Interval 6x4

− 9x2 + 2 (1− x2)3/2 f ′′(x) Conclusion

(

−1,− 1

6

√

27− 3
√

33
)

− + − f is concave down
(

−
1

6

√

27− 3
√

33, 1

6

√

27− 3
√

33
)

+ + + f is concave up
(

1

6

√

27− 3
√

33, 1
)

− + − f is concave down

Therefore, f is concave down on the intervals

(

−1,−1

6

√

27− 3
√
33

)

and

(

1

6

√

27− 3
√
33, 1

)

and concave up on the interval

(

−1

6

√

27− 3
√
33,

1

6

√

27− 3
√
33

)

.
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(c) Because the concavity of f changes at ±1

6

√

27− 3
√
33, the points

(

±1

6

√

27− 3
√
33, f

(

±1

6

√

27− 3
√
33

))

=



±1

6

√

27− 3
√
33,

9−
√
33

12

√

3 +
√
33

12





are points of inflection of f .

59. Let f(x) = x− 2 sinx, and consider the interval [0, 2π].

(a) The function f is differentiable everywhere, so critical numbers occur where f ′(x) = 0.
Now,

f ′(x) = 1− 2 cosx,

so
π

3
and

5π

3
are critical numbers. To determine where f ′(x) > 0 and f ′(x) < 0, use

the numbers
π

3
and

5π

3
to divide [0, 2π] into three intervals. The sign of f ′(x) is then

determined on each interval, as shown in the following table.

Sign of
Interval f ′(x) Conclusion
(

0, π3
)

− f is decreasing
(

π
3 ,

5π
3

)

+ f is increasing
(

5π
3 , 2π

)

− f is decreasing

Therefore, f is decreasing on the intervals
(

0,
π

3

)

and

(

5π

3
, 2π

)

and increasing on the

interval

(

π

3
,
5π

3

)

. By the First Derivative Test, it follows that f has a local minimum

value at
π

3
and a local maximum value at

5π

3
. The local minimum value is f

(π

3

)

=
π

3
−
√
3 ,

and the local maximum value is f

(

5π

3

)

=
5π

3
+
√
3 .

(b) The function f is concave up where f ′′(x) > 0 and concave down where f ′′(x) < 0.
Now,

f ′′(x) = 2 sinx,

so f ′′(x) = 0 when x = 0, π, and 2π. For 0 < x < π, f ′′(x) > 0, so f is

concave up on the interval (0, π) ; for π < x < 2π, f ′′(x) < 0, so f is

concave down on the interval (π, 2π) .

(c) Because the concavity of f changes at π, the point (π, f(π)) = (π, π) is a point of

inflection of f .

61. Let f(x) =
ex + e−x

2
= coshx.

(a) The function f is differentiable everywhere, so the critical numbers of f occur where
f ′(x) = 0. Now,

f ′(x) = sinhx,

so 0 is a critical number of f . For x < 0, f ′(x) < 0, so f is decreasing on the
interval (−∞, 0); for x > 0, f ′(x) > 0, so f is increasing on the interval (0,∞). By
the First Derivative Test, it follows that f has a local minimum value at 0. The

local minimum value is f(0) = cosh 0 = 1 .
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(b) The function f is concave up where f ′′(x) > 0 and concave down where f ′′(x) < 0.
Now,

f ′′(x) = coshx ≥ 1 > 0

for all x. Therefore, f is concave up on the interval (−∞,∞) .

(c) Because the concavity of f does not change, f has no points of inflection .

63. (a) −
√
3, 0,

√
3

(b)
[

−
√
3, 0
]

,
[√

3,∞
)

(c)
(

−∞,−
√
3
]

,
[

0,
√
3
]

(d) −
√
3,

√
3

(e) 0

(f) (−∞,−1), (1,∞)

(g) (−1, 1)

(h) −1, 1

65. (a) 0, 1

(b) (−∞, 0], [1,∞)

(c) [0, 1]

(d) 1

(e) 0

(f)
(

3

√

1
4 ,∞

)

(g)
(

−∞, 3

√

1
4

)

(h) 3

√

1
4

67. Let f(x) = −2x3+15x2−36x+7. The polynomial function f is differentiable everywhere,
so critical numbers occur where f ′(x) = 0. Now,

f ′(x) = −6x2 + 30x− 36 = −6(x2 − 5x+ 6) = −6(x− 3)(x− 2),

so 2 and 3 are the critical numbers of f .

(a) To determine where f ′(x) > 0 and f ′(x) < 0, use the numbers 2 and 3 to divide
the number line into three intervals. The sign of f ′(x) is then determined on each
interval, as shown in the following table.

Sign of Sign of Sign of
Interval −6(x− 3) x− 2 f ′(x) Conclusion

(−∞, 2) + − − f is decreasing
(2, 3) + + + f is increasing
(3,∞) − + − f is decreasing

Therefore, f is decreasing on the intervals (−∞, 2) and (3,∞) and increasing on the
interval (2, 3). By the First Derivative Test, it follows that f has a local minimum
value at 2 and a local maximum value at 3. The

local minimum value is f(2) = −21, and the local maximum value is f(3) = −20 .
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(b) The second derivative of f is

f ′′(x) = −12x+ 30.

Evaluating the second derivative at the critical numbers yields

f ′′(2) = 6 > 0 and f ′′(3) = −6 < 0.

By the Second Derivative Test, it follows that f has a local minimum value at 2 and
a
local maximum value at 3 .

(c) Answers will vary, but here is one possible response. Neither test is particularly diffi-
cult to use. The First Derivative Test requires the calculation of only one derivative,
but the Second Derivative Test requires fewer steps.

69. (a) f(x) is defined for all x, so find the critical points by setting the derivative equal to 0:

f ′(x) = 0

d

dx

(

x4 − 8x2 − 5
)

= 0

4x3 + 16x = 0

4x
(

x2 + 4
)

= 0

4x = 0, since x2 + 4 > 0 for all x

x = 0

The critical point, and hence the boundary of the regions to be analyzed, is x = 0.

For x < 0, f ′(x) = 4(negative)(positive) = negative, and for x > 0, f ′(x) =
4(positive)(positive) = positive.

Therefore no local maximum; local minimum f(0) = (0)4 − 8(0)2 − 5 = −5 at x = 0.

(b) Analyze the second derivative at the critical point:

f ′′(x) =
d

dx
f ′(x)

=
d

dx

(

4x3 + 16x
)

= 12x2 + 16

f ′′(0) = 12(0)
2
+ 16 = 16 > 0

The graph is concave up at x = 0, so (0,−5) is a local minimum.

(c) Answers will vary, including, but not limited to, the statement that with the Second
Derivative Test one only has to substitute a single value into a relatively easy second-
derivative formula to determine that f is concave up at the single critical number and
therefore has a local minimum there.

71. (a) f(x) is defined for all x, so find the critical points by setting the derivative equal to 0:

f ′(x) = 0

d

dx

(

3x5 + 5x4 + 1
)

= 0

15x4 + 20x3 = 0

5x3(3x+ 4) = 0

x = 0 or x = −4

3

The critical points, and hence the boundaries of the regions to be analyzed, are x = − 4
3

and x = 0.
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For x < − 4
3 , f

′(x) = 5(negative)
3
(negative) = positive.

For − 4
3 < x < 0, f ′(x) = 5(negative)

3
(positive) = negative.

For x > 0, f ′(x) = 5(positive)
3
(positive) = positive

Therefore local maximum f
(

− 4
3

)

= 3
(

− 4
3

)5
+ 5
(

− 4
3

)4
+ 1 = 337

81 at x = − 4
3 ; local

minimum f(0) = 3(0)
5
+ 5(0)

4
+ 1 = 1 at x = 0.

(b) Analyze the second derivative at the critical points:

f ′′(x) =
d

dx
f ′(x)

=
d

dx

(

15x4 + 20x3
)

= 60x3 + 60x2

f ′′
(

−4

3

)

= 60

(

−4

3

)3

+ 60

(

−4

3

)2

= −320

9
< 0

f ′′(0) = 60(0)
3
+ 60(0)

2
= 0

The graph is concave down at x = − 4
3 , so

(

− 4
3 ,

337
81

)

is a local maximum.

The graph is (momentarily) neither concave up nor concave down at x = 0, so the
Second Derivative Test (by itself) provides no information about whether (0, 1) is a
local maximum, a local minimum, or an inflection point.

(c) Answers will vary, including, but not limited to, the statement that the Second Deriva-
tive test does not provide enough information about one of the points.

73. Let f(x) = (x − 3)2ex. The function f is differentiable everywhere, so critical numbers
occur where f ′(x) = 0. Now,

f ′(x) = (x− 3)2ex + 2(x− 3)ex = (x2 − 4x+ 3)ex = (x− 3)(x− 1)ex,

so 1 and 3 are the critical numbers of f

(a) To determine where f ′(x) > 0 and f ′(x) < 0, use the numbers 1 and 3 to divide
the number line into three intervals. The sign of f ′(x) is then determined on each
interval, as shown in the following table.

Sign of Sign of Sign of
Interval x− 3 (x− 1)ex f ′(x) Conclusion

(−∞, 1) − − + f is increasing
(1, 3) − + − f is decreasing
(3,∞) + + + f is increasing

Therefore, f is increasing on the intervals (−∞, 1) and (3,∞) and decreasing on the
interval (1, 3). By the First Derivative Test, it follows that f has a local maximum
value at 1 and a local minimum value at 3. The

local maximum value is f(1) = 4e, and the local minimum value is f(3) = 0 .

(b) The second derivative of f is

f ′′(x) = (x2 − 4x+ 3)ex + (2x− 4)ex = (x2 − 2x− 1)ex.

Evaluating the second derivative at the critical numbers yields

f ′′(1) = −2e < 0 and f ′′(3) = 2e > 0.

By the Second Derivative Test, it follows that f has a local maximum value at 1 and
a
local minimum value at 3 .
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(c) Answers will vary, but here is one possible response. Neither test is particularly diffi-
cult to use. The First Derivative Test requires the calculation of only one derivative,
but the Second Derivative Test requires fewer steps.

Applications and Extensions

75. Answers will vary. The figure below displays the graph of a function f with the properties:
f is concave up on (−∞,∞), increasing on (−∞, 0), decreasing on (0,∞), and f(0) = 1.
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77. Answers will vary. The figure below displays the graph of a function f with the properties:
f is concave down on (−∞, 1), concave up on (1,∞), decreasing on (−∞, 0), increasing on
(0,∞), and f(0) = 1 and f(1) = 2.
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79. Answers will vary. The figure below displays the graph of a function f with the properties:
f ′(x) > 0 if x < 0, f ′(x) < 0 if x > 0, f ′′(x) > 0 if x < 0, f ′′(x) > 0 if x > 0, and f(0) = 1.
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81. Answers will vary. The figure below displays the graph of a function f with the properties:
f ′′(0) = 0, f ′(0) = 0, f ′′(x) > 0 if x < 0, f ′′(x) > 0 if x > 0, and f(0) = 1.
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83. Answers will vary. The figure below displays the graph of a function f with the properties:
f ′(0) = 0, f ′(x) < 0 if x 6= 0, f ′′(x) > 0 if x < 0, f ′′(x) < 0 if x > 0, and f(0) = 1.
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85. Answers will vary. The figure below displays the graph of a function f with the properties:
f ′(0) does not exist, f ′′(x) > 0 if x < 0, f ′′(x) > 0 if x > 0, and f(0) = 1.

-5 -4 -3 -2 -1 1 2 3 4 5

 

 

 

 

1

87. Let f(x) = e−(x−2)2 .

(a) Using the command

Reduce [ D [ Exp[-(x-2)2], {x,2} ] > 0, x ]

in Mathematica yields the solution

x < 2−
√
2

2
or x > 2 +

√
2

2

to the inequality f ′′(x) > 0; the command

Reduce [ D [ Exp[-(x-2)2], {x,2} ] < 0, x ]

yields the solution

2−
√
2

2
< x < 2 +

√
2

2

to the inequality f ′′(x) < 0. Therefore, f is

concave up on the intervals

(

−∞, 2−
√
2

2

)

and

(

2 +

√
2

2
,∞
)

and concave down on the interval

(

2−
√
2

2
, 2 +

√
2

2

)

.

(b) Because the concavity of f changes at 2±
√
2

2
, the points

(

2−
√
2

2
, f

(

2−
√
2

2

))

=

(

2−
√
2

2
,
1√
e

)

and
(

2 +

√
2

2
, f

(

2 +

√
2

2

))

=

(

2 +

√
2

2
,
1√
e

)

are points of inflection of f .



318 Chapter 4 Applications of the Derivative

(c) The figure below displays the graph of f with the points of inflection marked with
black squares. At the point on the left, the concavity changes from up to down, while
at the point on the right, the concavity changes from down to up.
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89. Let f(x) =
2− x

2x2 − 2x+ 1
.

(a) Using the command

N [ Reduce [ D [ (2-x)/(2x2 - 2x + 1), {x,2} ] > 0, x ] ]

in Mathematica yields the approximate solution

x < 0.134792 or 0.7211 < x < 5.14411

to the inequality f ′′(x) > 0; the command

N [ Reduce [ D [ (2-x)/(2x2 - 2x + 1), {x,2} ] < 0, x ] ]

yields the approximate solution

0.134792 < x < 0.7211 or x > 5.14411

to the inequality f ′′(x) < 0. Therefore, f is

concave up on the intervals (−∞, 0.134792) and (0.7211, 5.14411)

and concave down on the intervals (0.134792, 0.7211) and (5.14411,∞) .

(b) Because the concavity of f changes at approximately 0.134792, 0.7211, and 5.14411,
the points

(0.134792, f(0.134792)) = (0.134792, 2.43260) ,

(0.7211, f(0.7211)) = (0.7211, 2.13945) , and

(5.14411, f(5.14411)) = (5.14411,−0.07205)

are approximately the points of inflection of f .

(c) The figure below displays the graph of f with the points of inflection marked with
black squares. From left to right, the concavity changes from up to down, down to
up, and up to down at the inflection points.
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91. Let f(x) = ax3 + bx2. For the point (1, 6) to be on the graph of f , f(1) must be equal to
6. As f(1) = a+ b, the numbers a and b must satisfy the equation a+ b = 6. Because the
polynomial function f is twice differentiable everywhere, if f is to have an inflection point
at the point (1, 6), f ′′(1) must be equal to 0. Now,

f ′(x) = 3ax2 + 2bx and f ′′(x) = 6ax+ 2b,

so f ′′(1) = 6a+ 2b and another equation that a and b must satisfy is 6a+ 2b = 0. Solving

a+ b = 6 and 6a+ 2b = 0 yields a = −3 and b = 9 .

93. Let N(t) =
10, 000

1 + 9999e−t
.

(a) The rate of change of the infection is

N ′(t) =
(1 + 9999e−t) · 0− 10, 000 · −9999e−t

(1 + 9999e−t)2
=

99, 990, 000e−t

(1 + 9999e−t)2
.

(b) N ′(t) is increasing when N ′′(t) > 0 and decreasing when N ′′(t) < 0. Now,

N ′′(t) =
(1 + 9999e−t)2 · −99, 990, 000e−t− 99, 990, 000e−t · 2(1 + 9999e−t)(−9999e−t)

(1 + 9999e−t)4

=
99, 990, 000e−t(19998e−t − 1− 9999e−t)

(1 + 9999e−t)3
=

99, 990, 000e−t(9999e−t − 1)

(1 + 9999e−t)3
,

so N ′′(t) = 0 when
9999e−t − 1 = 0 or t = ln 9999.

For 0 < t < ln 9999, N ′′(t) > 0, so N ′(t) is increasing on the interval (0, ln 9999) .

For t > ln 9999, N ′′(t) < 0, so N ′(t) is decreasing on the interval (ln 9999,∞) .

(c) Based on the results of part (b) and the First Derivative Test, the rate of change of

the infection is a maximum when t = ln 9999 .

(d) Based on the results of part (b), N is concave up on the interval (0, ln 9999) and
concave down on the interval (ln 9999,∞). Therefore, the concavity of N changes at
ln 9999, and the point

(ln 9999, N(ln 9999)) = (ln 9999, 5000)

is an inflection point of N .
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(e) Comparing the results of parts (c) and (d), we see that the point of inflection of N is
the point at which N ′(t) is maximum.

95. (a) The figure below displays a scatterplot of the population data.
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(b) Using the Logistic regression function on a TI-84 Plus calculator, the logistic func-
tion that best fits the given data is

P (t) =
762, 176, 717.8

1 + 8.743e−0.0162t
.

(c) The rate of change in population is

P ′(t) =
(1 + 8.743e−0.0162t) · 0− 762, 176, 717.8 · −0.1416366e−0.0162t

(1 + 8.743e−0.0162t)2
=

107, 952, 118.9e−0.0162t

(1 + 8.743e−0.0162t)2
.

(d) P ′(t) is increasing when P ′′(t) > 0 and decreasing when P ′′(t) < 0. Now,

P ′′(t) =
(1 + 8.743e−0.0162t)2 · −1, 748, 824.326e−0.0162t

(1 + 8.743e−0.162t)4
−

107, 952, 118.9e−0.0162t · 2(1 + 8.743e−0.0162t)(−0.1416366e−0.0162t)

(1 + 8.743e−0.162t)4

=
1, 748, 824.326e−0.0162t(17.486e−0.0162t − 1− 8.743e−0.0162t)

(1 + 8.743e−0.0162t)3

=
1, 748, 824.326e−0.0162t(8.743e−0.0162t − 1)

(1 + 8.743e−0.0162t)3
,

so P ′′(t) = 0 when

8.743e−0.0162t − 1 = 0 or t =
1

0.0162
ln 8.743 ≈ 133.843.

For 0 < t < 133.843, P ′′(t) > 0, so P ′(t) is increasing on the interval (0, 133.843) .

For t > 133.843, P ′′(t) < 0, so P ′(t) is decreasing on the interval (133.843,∞) .

(e) Based on the results of part (d) and the First Derivative Test, the rate of change in

population is a maximum when t ≈ 133.843 .
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(f) Based on the results of part (d), P is concave up on the interval (0, 133.843) and
concave down on the interval (133.843,∞). Therefore, the concavity of P changes at
133.843, and the point

(133.843, P (133.843))≈ (133.843, 381088358.9)

is an inflection point of P .

(g) Comparing the results of parts (e) and (f), we see that the point of inflection of P is
the point at which P ′(t) is maximum.

97. Let B(t) = −12.8t3 + 163.4t2 − 614.0t+ 390.6.

(a) The polynomial function B is differentiable everywhere, so the critical numbers of B
occur where B′(t) = 0. Now,

B′(t) = −38.4t2 + 326.8t− 614.0,

so the critical numbers of B are

t =
−326.8±

√

326.82 − 4(−38.4)(−614.0)

−76.8
=

−326.8±
√
12487.84

−76.8
≈ 2.80, 5.71.

Evaluating B′′(t) = −76.8t+ 326.8 at the critical numbers yields

B′′(2.80) = 111.76 > 0 and B′′(5.71) = −111.728 < 0,

so B has a local minimum value at 2.80 and a local maximum value at 5.71. The

local minimum value is B(2.80) ≈ −328.53 billion dollars ,

and the local maximum value is B(5.71) ≈ −170.80 billion dollars .

(b) Because both local extreme values are negative, both represent a budget deficit .

(c) From part (a), B′′(t) = −76.8t+326.8, so B′′(t) = 0 when t ≈ 4.26. For 0 < t < 4.26,

B′′(t) > 0, so B is concave up on the interval (0, 4.26) ; for 4.26 < t < 9, B′′(t) < 0,

so B is concave down on the interval (4.26, 9) . Because the concavity of B changes

at 4.26, the point (4.26, B(4.26)) ≈ (4.26,−249.27) is a point of inflection of B.

(d) Because B′′(t) > 0 for t < 4.26, to the left of the point of inflection, the rate of change
of the budget is increasing at an increasing rate; because B′′(t) < 0 for t > 4.26, to
the right of the point of inflection, the rate of change of the budget is increasing at a
decreasing rate.

(e) The figure below displays the graph of B. Given that B predicts a 3.6 trillion dollar
budget deficit in 2011, which would indicate that the government took in nothing in
2011, B does not seem to be an accurate predictor for the budget for the years 2010
and beyond.
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99. Let f(x) = ax3 + bx2 + cx + d, where a 6= 0. In order for the graph of f to contain the
points (0, 5) and (4, 33), f(0) must be equal to 5 and f(4) must be equal to 33. These
conditions yield the equations d = 5 and 64a+16b+4c+d = 33. The polynomial function
f is differentiable everywhere, so for f to have a local minimum at 0 and a local maximum
at 4, both f ′(0) and f ′(4) must be equal to 0. Now,

f ′(x) = 3ax2 + 2bx+ c,

so the derivative conditions yield the equations c = 0 and 48a + 8b + c = 0. The solu-
tion of the equations d = 5, 64a + 16b + 4c + d = 33, c = 0, and 48a + 8b + c = 0 is

a = −7

8
, b =

21

4
, c = 0, and d = 5 .

101. Let y =
√
3 sinx + cosx, and consider the interval 0 ≤ x ≤ 2π. Because the function y is

differentiable everywhere, local extrema can only occur where y′(x) = 0. Now,

y′(x) =
√
3 cosx− sinx,

so y′(x) = 0 when tanx =
√
3, which is when x =

π

3
and when x =

4π

3
. For 0 < x <

π

3
,

y′(x) > 0, so y is increasing on the interval
(

0,
π

3

)

; for
π

3
< x <

4π

3
, y′(x) < 0, so y is

decreasing on the interval

(

π

3
,
4π

3

)

; and for
4π

3
< x < 2π, y′(x) > 0, so y is increasing on

the interval

(

4π

3
, 2π

)

. By the First Derivative Test, it follows that y has a local maximum

value at
π

3
and a local minimum value at

4π

3
. The local maximum value is f

(π

3

)

= 2 ,

and the local minimum value is f

(

4π

3

)

= −2 .

Next,
y′′(x) = −

√
3 sinx− cosx,

so y′′(x) = 0 when tanx = −
√
3

3
, which is when x =

5π

6
and when x =

11π

6
. For

0 < x <
5π

6
, y′′(x) < 0, so y is concave down on the interval

(

0,
5π

6

)

; for
5π

6
< x <

11π

6
,

y′′(x) > 0, so y is concave up on the interval

(

5π

6
,
11π

6

)

; and for
11π

6
< x < 2π, y′′(x) < 0,
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so y is concave down on the interval

(

11π

6
, 2π

)

. Because the concavity of y changes at

5π

6
and

11π

6
, the points

(

5π

6
, f

(

5π

6

))

=

(

5π

6
, 0

)

and

(

11π

6
, f

(

11π

6

))

=

(

11π

6
, 0

)

are points of inflection of y.

103. Let f(x) = x2/3. Then

f ′(x) =
2

3
x−1/3 and f ′′(x) = −2

9
x−4/3.

It follows that 0 is the only critical number of f , but f ′′(x) does not exist at 0 ; therefore,

the Second Derivative Test cannot be applied to identify the extreme value of f(x) = x2/3.

105. (a) Not necessarily true . The figure below displays a function f that is continuous for

all x and has a local maximum at (−1, 4) and a local minimum at (3,−2), but does
not have a point of inflection somewhere between x = −1 and x = 3.
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(b) Not necessarily true . See the graph in part (a) for which f ′(−1) does not exist.

(c) Not necessarily true . See the graph in part (a) which does not have a horizontal
asymptote.

(d) Not necessarily true . See the graph in part (a) which does not have a tangent line

at x = 3.

(e) True . The function is continuous for all x, so f(0) is defined, meaning the graph of
f has a y-intercept, and the graph of f intersects the y-axis. Moreover, because f is
continuous on the closed interval [−1, 3] with f(−1) = 4 > 0 and f(3) = −2 < 0, the
Intermediate Value Theorem guarantees there exists a c in (−1, 3) such that f(c) = 0.
Therefore, the graph of f intersects the x-axis as well.

107. Consider the function f(x) = x− sinx. Now,

f ′(x) = 1 + cosx ≥ 0

on the interval 0 ≤ x ≤ 2π. Therefore, f is increasing on the interval 0 ≤ x ≤ 2π, so
f(x) ≥ f(0) = 0 on the interval 0 ≤ x ≤ 2π. That is, x − sinx ≥ 0, or x ≥ sinx on the
interval 0 ≤ x ≤ 2π.

109. Let f(x) = 2
√
x− 3 +

1

x
. Now,

f ′(x) =
1√
x
− 1

x2
.
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For x > 1,

x2 >
√
x so that

1

x2
<

1√
x
.

It follows that f ′(x) > 0 and f is increasing for x > 1. Therefore, f(x) > f(1) = 0 for
x > 1; that is,

2
√
x− 3 +

1

x
> 0 or 2

√
x > 3− 1

x

for x > 1.

111. Let f(x) = 3x4 − 4x3 − 12x2 + 40. Then

f ′(x) = 12x3 − 12x2 − 24x = 12x(x2 − x− 2) = 12x(x+ 1)(x− 2),

so −1, 0, and 2 are critical numbers of f . Consider the closed interval [−1, 2]. Evaluating
f at −1, 0, and 2 yields

f(−1) = 35, f(0) = 40, and f(2) = 8,

so the absolute minimum value of f on the interval [−1, 2] is 8. For x < −1, f ′(x) < 0, so
f is decreasing on the interval (−∞,−1). This means that f(x) ≥ f(−1) = 35 for x < −1.
Moreover, for x > 2, f ′(x) > 0, so f is increasing on the interval (2,∞). This means that
f(x) > f(2) = 8 for x > 2. Bringing all of this information together, it follows that f has
an absolute minimum value of 8 at 2. Therefore, f(x) ≥ 8 > 0 for all x.

113. Let f(x) = ax3+bx2+cx+d, where a 6= 0. Then f ′(x) = 3ax2+2bx+c and f ′′(x) = 6ax+2b,

so f ′′(x) = 0 when x = − b

3a
. If a < 0, then

f ′′(x) > 0 when x < − b

3a
and f ′′(x) < 0 when x > − b

3a
,

so the concavity of f changes and there is a point of inflection at − b

3a
; if a > 0, then

f ′′(x) < 0 when x < − b

3a
and f ′′(x) > 0 when x > − b

3a
,

so, again, the concavity of f changes and there is a point of inflection at − b

3a
. Therefore,

every polynomial of degree 3 has exactly one point of inflection.

115. Let f(x) = (x − a)n, where a is a constant and n ≥ 3 is an odd integer. Then,

f ′(x) = n(x− a)n−1 and f ′′(x) = n(n− 1)(x− a)n−2,

so f ′′(x) exists everywhere and is equal to zero only for x = a. Because n is an odd integer,
n − 2 is also an odd integer, so f ′′(x) < 0 for x < a and f ′′(x) > 0 for x > a. It follows
that the concavity of f changes and f has a point of inflection at a. There are no other
candidates for points of inflection, so the function f has exactly one point of inflection.

117. Consider the function f(x) =
ax+ b

ax+ d
. The rational function f is differentiable on its

domain, so critical numbers occur only when f ′(x) = 0 and points of inflection can only
occur when f ′′(x) = 0. Now,

f ′(x) =
(ax+ d)(a)− (ax+ b)(a)

(ax+ d)2
=

a(d− b)

(ax + d)2
,

and

f ′′(x) = −2a2(d− b)

(ax+ d)3
.
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Provided a 6= 0 and d 6= b, f ′(x) and f ′′(x) are never equal to zero, so the function f has no
critical numbers and no points of inflection. If a = 0 or d = b, then f is a constant function
so that all real numbers x are critical numbers but f still has no points of inflection.

119. Let f be a continuous function on some interval I. Suppose c is a critical number of f and
(a, b) is some open interval in I containing c with f ′(x) < 0 for a < x < c and f ′(x) > 0
for c < x < b. Then the function f is decreasing on the interval (a, c) and increasing on
the interval (c, b); in other words, for all x in (a, b), f(x) ≥ f(c). Therefore, f(c) is a local
minimum value.

121. Let f be a function that is continuous on the closed interval [a, b]. Moreover, suppose that
f ′ and f ′′ exist on the open interval (a, b) with f ′′(x) < 0 on (a, b). Let c be any fixed
number in (a, b). An equation of the tangent line to f at the point (c, f(c)) is

y = f(c) + f ′(c)(x − c).

To show that f is concave down on (a, b), it must be established that the graph of f lies
below each of its tangent lines for all x in (a, b); that is, that

f(x) ≤ f(c) + f ′(c)(x − c)

for all x in (a, b). If x = c, then f(x) = f(c) and there is nothing more to prove. If x 6= c,
then by applying the Mean Value Theorem to the function f , there is a number x1 between
c and x for which

f ′(x1) =
f(x)− f(c)

x− c
.

Solve this equation for f(x) to obtain f(x) = f(c) + f ′(x1)(x− c). There are two cases to
consider:

• Case I: c < x1 < x: Because f ′′(x) < 0 on the interval (a, b), it follows that f ′ is
decreasing on (a, b). For x1 > c, this means that f ′(x1) < f ′(c). Multiplying by x− c,
which is positive, and adding f(c) then yields

f(x) = f(c) + f ′(x1)(x− c) < f(c) + f ′(c)(x− c);

that is, the graph of f lies below each of its tangent lines to the right of c in (a, b).

• Case II: x < x1 < c: Because f ′′(x) < 0 on the interval (a, b), it follows that f ′ is
decreasing on (a, b). For x1 < c, this means that f ′(x1) > f ′(c). Multiplying by x− c,
which is negative, and adding f(c) then yields

f(x) = f(c) + f ′(x1)(x− c) < f(c) + f ′(c)(x− c);

that is, the graph of f lies below each of its tangent lines to the left of c in (a, b).

Therefore, f is concave down.

Challenge Problems

123. Let f(x) = (x+ 1) tan−1 x. Then

f ′(x) = (x+ 1) · 1

1 + x2
+ tan−1 x =

x+ 1

1 + x2
+ tan−1 x,

and

f ′′(x) =
(1 + x2) · 1− (x+ 1)(2x)

(1 + x2)2
+

1

1 + x2
=

1 + x2 − 2x2 − 2x

(1 + x2)2
+

1 + x2

(1 + x2)2
=

2− 2x

(1 + x2)2
,

so f ′′(x) exists everywhere and is equal to zero when x = 1. For x < 1, f ′′(x) > 0, so f
is concave up on the interval (−∞, 1); for x > 1, f ′′(x) < 0, so f is concave down on the

interval (1,∞). Because the concavity of f changes at 1, the point (1, f(1)) =
(

1,
π

2

)

is

a point of inflection of f .



326 Chapter 4 Applications of the Derivative

AP
R©

Practice Problems

1. Given that f ′′(x) = x(x+1)2(x− 2), determine when f ′′(x) = 0 to determine the intervals

on which we should test the concavity of f . Set f ′′(x) = x(x+ 1)
2
(x− 2) = 0 and solve,

to find x = 0, x = −1 and x = 2.

The function f is concave up in the interval(s) where f ′′(x) > 0 and concave down in the
interval(s) where f ′′(x) < 0. The sign of f ′′(x) with the determination of whether the
graph is concave up or concave down in the specified interval is shown in the following
table.

Interval Sign of x Sign of (x+ 1)
2

Sign of x− 2 Sign of f ′′(x) Conclusion

(−∞,−1) − + − + Concave Up
(−1, 0) − + − + Concave Up
(0, 2) + + − − Concave Down
(2,∞) + + + + Concave Up

From the chart, since a Point of Inflection is at the point where the concavity changes, the

Inflection Points are at 0 and 2 only .

CHOICE D

3. g(x) = x5 + x3 − 2x − 1. The polynomial function f is differentiable everywhere, so the
critical numbers for g occur where g′(x) = 0.

g′(x) = 5x4 + 3x2 − 2

Determine the critical numbers by setting g′(x) = 0 and solving for x.

g′(x) = 0

5x4 + 3x2 − 2 = 0
(

5x2 − 2
)(

x2 + 1
)

= 0

5x2 − 2 = 0, since x2 + 1 > 0

x = ±
√

2

5
= ±

√
10

5

By the First Derivative Test g(x) has a local minimum at the critical number(s) where
g′(x) changes from negative to positive.

To determine where g′(x) > 0 and g′(x) < 0 use the numbers x =
√
10
5 and x = −

√
10
5 to

determine the intervals to test for the function increasing or decreasing. The sign of g′(x)
with the determination of whether the graph is increasing or decreasing in the specified
interval is shown in the following table.

Interval Sign of 5x2 − 2 Sign of
(

x2 + 1
)

Sign of f ′(x) Conclusion
(

−∞,−
√
10
5

)

+ + + Increasing
(

−
√
10

5 ,
√
10
5

)

− + − Decreasing
(√

10
5 ,∞

)

+ + + Increasing

By the First Derivative Test, g has a local minimum at x =
√
10
5

CHOICE B
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5. f(2) = 0. f ′(2) is the slope of the line tangent to f at (2, f(2)), which appears to be
negative. f ′′(2) is the concavity of f at (2, f(2)), which appears to be positive, as the

graph is concave up for the entire domain. Therefore f ′(2) < f(2) < f ′′(2) .

CHOICE B

7. v(t) = s′(t). A value of v(t) in the chart represents the s′(t) value, which is the slope of the
line tangent to the graph of s(t) at the specified value of t. Numerous values in the chart
could be examined, but note that v(3) = 0 and v(5) = 0, indicating a horizontal tangent
line to s(t) at (3, s(3)) and (5, s(5)). Reviewing the given graphs shows that only Choice

B satisfies these conditions.

CHOICE B

9. f(x) =
x4

2
− 2x3 − 9x2 − 12x+ 5

f ′(x) = 2x3 − 6x2 − 18x− 12

f ′′(x) = 6x2 − 12x− 18

Set f ′′(x) = 0 and solve for x.

6x2 − 12x− 18 = 0

6(x− 3)(x+ 1) = 0

x = 3 or x = −1

The function f is concave up where f ′′(x) > 0 and concave down where f ′′(x) < 0.

To determine where f ′′(x) > 0 and f ′′(x) < 0 use the numbers x = −1 and x = 3 to
determine the intervals to test for concavity. The sign of f ′′(x) with the determination of
whether the graph is concave up or concave down in the specified interval is shown in the
following table.

Interval Sign of x− 3 Sign of x+ 1 Sign of f ′′(x) Conclusion

(−∞,−1) − − + Concave Up
(−1, 3) − + − Concave Down
(3,∞) + + + Concave Up

f is concave down on the interval (−1, 3)

CHOICE A

11. f(x) = (x− 1)4/5 − 2

f ′(x) =
4

5
(x− 1)

−1/5

=
4

5(x− 1)
1/5

f ′′(x) =
4

5

(

−1

5

)

(x− 1)
−6/5

= − 4

25(x− 1)
6/5

f has a critical number at x = 1, since f ′(x) does not exist at x = 1. There are no other
critical numbers, since f ′(x) never equals 0.
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Interval Sign of f ′(x) Conclusion Sign of f ′′(x) Conclusion

(−∞, 1) − Decreasing − Concave Down
(1,∞) + Increasing − Concave Down

By the First Derivative Test, (1,−2) is a local minimum. Choice A is true.

f is concave down on (−∞, 1) and (1,∞). Choice B is true.

The point (1,−2) is not an inflection point. Choice C is false.

f does have a vertical tangent at x = 1, since f is continuous everywhere but f ′(x) → ±∞
as x→ ±∞. Choice D is true.

CHOICE C

13. All of the extrema are less than 0, so any possible zeros must be to the left of −5 or to the
right of 2.

Since (−5,−3) is a local minimum and f is a polynomial, f(x) → +∞ as x → −∞, and
there is a zero to the left of −5.

Since (2,−6) is a local minimum and f is a polynomial, f(x) → +∞ as x → +∞, and
there is a zero to the right of 2.

Therefore f has two zeros.

CHOICE B

15. x(t) =
ln t

t

x′(t) =
t · 1

t − (ln t) · 1
t2

=
1− ln t

t2

Set x′(t) = 0 and solve for t.

1− ln t

t2
= 0

1− ln t = 0, since t2 > 0, since t 6= 0

ln t = 1

t = e

x(t) has a critical number where x′(t) = 0, which is at t = e. The domain is t > 0, so there
are no values for which x′(t) does not exist.

Time Interval Sign of x′(t) Signed Distance Motion of Object

(0, e) + Increasing To the Right
(e,∞) − Decreasing To the Left

The object is furthest from the origin at t = e seconds (at which time it reverses direction
and heads back left).

CHOICE D



4.5 Indeterminate Forms and L’Hôpital’s Rule 329

4.5 Indeterminate Forms and L’Hôpital’s Rule

Concepts and Vocabulary

1. False .
f(x)

g(x)
is an indeterminate form at c of the type

0

0
if lim

x→c
f(x) = 0 and lim

x→c
g(x) = 0.

3. False .
1

x
is not an indeterminate form at 0 because, in the numerator, lim

x→0
1 = 1 6= 0.

5. Answers will vary, but here is one possible response. Suppose

lim
x→c

f(x) = ∞ and lim
x→c

g(x) = ∞.

The following argument would also hold if both limits were −∞. Consider the expression
f(x)−g(x) as x approaches c. If the value of f becomes unbounded faster than the value of
g, the value of f(x)−g(x) should approach∞, whereas if the value of g becomes unbounded
faster than the value of f , the value of f(x) − g(x) should approach −∞. Moreover, if f
and g become unbounded at similar rates, there could be cancellation leading the value of
f(x) − g(x) to approach any real number. In other words, in an expression of the form
∞−∞, there is competition between the two terms in the expression, and an analysis of
these competing forces is needed to determine the value of the limit. This is why ∞−∞
is an indeterminate form.

Next, consider the expression f(x) + g(x). In this expression, there is no competition
between the two terms. The values of f and g are working together to make the value of
f(x) + g(x) approach ∞. This is why ∞+∞ is not an indeterminate form.

Skill Building

7. (a) Because
lim
x→0

(1− ex) = 0 and lim
x→0

x = 0,

the expression
1− ex

x
is an indeterminate form at 0 .

(b) Based on the limits in part (a), the expression
1− ex

x
is an indeterminate form at 0

of the type
0

0
.

9. (a) Because
lim
x→0

ex = 1 6= 0 and lim
x→0

x = 0,

the expression
ex

x
is not an indeterminate form at 0 .

(b) The value of a limit of the form
1

0
approaches ±∞ , so it is not an indeterminate

form at 0.

11. (a) Because
lim
x→∞

lnx = ∞ and lim
x→∞

x2 = ∞,

the expression
lnx

x2
is an indeterminate form at ∞ .

(b) Based on the limits in part (a), the expression
lnx

x2
is an indeterminate form at ∞ of

the type
∞
∞ .
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13. (a) Because
lim
x→0

secx = 1 6= 0 and lim
x→0

x = 0,

the expression
secx

x
is not an indeterminate form at 0 .

(b) The value of a limit of the form
1

0
approaches ±∞ , so it is not an indeterminate

form at 0.

15. (a) Because
lim
x→0

[sinx(1 − cosx)] = 0 and lim
x→0

x2 = 0,

the expression
sinx(cos x− 1)

x2
is an indeterminate form at 0 .

(b) Based on the limits in part (a), the expression
sinx(cos x− 1)

x2
is an indeterminate

form at 0 of the type
0

0
.

17. (a) Because
lim
x→π

4

(tanx− 1) = 0 and lim
x→π

4

sin(4x− π) = 0,

the expression
(tanx− 1)

sin(4x− π)
is an indeterminate form at

π

4
.

(b) Based on the limits in part (a), the expression
(tanx− 1)

sin(4x− π)
is an indeterminate form

at
π

4
of the type

0

0
.

19. (a) Because
lim
x→∞

x2 = ∞ and lim
x→∞

e−x = 0,

the expression x2e−x is an indeterminate form at ∞ .

(b) Based on the limits in part (a), the expression x2e−x is an indeterminate form at ∞ of
the
type 0 · ∞ .

21. (a) Because

lim
x→0−

csc
x

2
= −∞ and lim

x→0−
cot

x

2
= −∞,

the expression csc
x

2
− cot

x

2
is an indeterminate form at 0−. Additionally,

lim
x→0+

csc
x

2
= ∞ and lim

x→0+
cot

x

2
= ∞,

so the expression csc
x

2
− cot

x

2
is also an indeterminate form at 0+. Therefore, the

expression csc
x

2
− cot

x

2
is an indeterminate form at 0 .

(b) Based on the limits in part (a), the expression csc
x

2
− cot

x

2
is an indeterminate form

at 0 of the type ∞−∞ .
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23. (a) Because

lim
x→0

1

x2
= ∞ and lim

x→0
sinx = 0,

the expression

(

1

x2

)sin x

is an indeterminate form at 0 .

(b) Based on the limits in part (a), the expression

(

1

x2

)sin x

is an indeterminate form at

0 of the type ∞0 .

25. (a) Because
lim
x→0

(x2 − 1) = −1 and lim
x→0

x = 0,

the expression (x2 − 1)x is not an indeterminate form at 0 .

(b) The value of a limit of the form (−1)0 approaches 1 , so it is not an indeterminate

form at 0.

27. Because
lim
x→2

(x2 + x− 6) = 0 and lim
x→2

(x2 − 3x+ 2) = 0,

the expression
x2 + x− 6

x2 − 3x+ 2
is an indeterminate form at 2 of the type

0

0
. Using L’Hôpital’s

Rule,

lim
x→2

x2 + x− 6

x2 − 3x+ 2
= lim

x→2

d
dx (x

2 + x− 6)
d
dx(x

2 − 3x+ 2)
= lim

x→2

2x+ 1

2x− 3
=

5

1
= 5 .

29. Because
lim
x→1

ln x = 0 and lim
x→1

(x2 − 1) = 0,

the expression
lnx

x2 − 1
is an indeterminate form at 1 of the type

0

0
. Using L’Hôpital’s

Rule,

lim
x→1

lnx

x2 − 1
= lim

x→1

d
dx lnx

d
dx(x

2 − 1)
= lim

x→1

1
x

2x
=

1

2
.

31. Because
lim
x→0

(ex − e−x) = 0 and lim
x→0

sinx = 0,

the expression
ex − e−x

sinx
is an indeterminate form at 0 of the type

0

0
. Using L’Hôpital’s

Rule,

lim
x→0

ex − e−x

sinx
= lim

x→0

d
dx (e

x − e−x)
d
dx sinx

= lim
x→0

ex + e−x

cosx
=

2

1
= 2 .

33. Because
lim
x→1

sin(πx) = 0 and lim
x→1

(x− 1) = 0,

the expression
sin(πx)

x− 1
is an indeterminate form at 1 of the type

0

0
. Using L’Hôpital’s

Rule,

lim
x→1

sin(πx)

x− 1
= lim

x→1

d
dx sin(πx)
d
dx(x− 1)

= lim
x→1

π cos(πx)

1
= −π .
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35. Because
lim
x→∞

x2 = ∞ and lim
x→∞

ex = ∞,

the expression
x2

ex
is an indeterminate form at ∞ of the type

∞
∞ . Using L’Hôpital’s Rule,

lim
x→∞

x2

ex
= lim

x→∞

d
dxx

2

d
dxe

x
= lim

x→∞

2x

ex
.

Because
lim
x→∞

(2x) = ∞ and lim
x→∞

ex = ∞,

the expression
2x

ex
is an indeterminate form at ∞ of the type

∞
∞ . Using L’Hôpital’s Rule

again,

lim
x→∞

x2

ex
= lim

x→∞

2x

ex
= lim

x→∞

d
dx(2x)
d
dxe

x
= lim

x→∞

2

ex
= 0 .

37. Because
lim
x→∞

lnx = ∞ and lim
x→∞

ex = ∞,

the expression
lnx

ex
is an indeterminate form at ∞ of the type

∞
∞ . Using L’Hôpital’s

Rule,

lim
x→∞

lnx

ex
= lim

x→∞

d
dx lnx
d
dxe

x
= lim

x→∞

1
x

ex
= 0 .

39. Because
lim
x→0

(ex − 1− sinx) = 0 and lim
x→0

(1 − cosx) = 0,

the expression
ex − 1− sinx

1− cosx
is an indeterminate form at 0 of the type

0

0
. Using L’Hôpital’s

Rule,

lim
x→0

ex − 1− sinx

1− cosx
= lim

x→0

d
dx(e

x − 1− sinx)
d
dx (1− cosx)

= lim
x→0

ex − cosx

sinx
.

Because
lim
x→0

(ex − cosx) = 0 and lim
x→0

sinx = 0,

the expression
ex − cosx

sinx
is an indeterminate form at 0 of the type

0

0
. Using L’Hôpital’s

Rule again,

lim
x→0

ex − 1− sinx

1− cosx
= lim

x→0

ex − cosx

sinx
= lim

x→0

d
dx(e

x − cosx)
d
dx sinx

= lim
x→0

ex + sinx

cosx
=

1

1
= 1 .

41. Because
lim
x→0

(sinx− x) = 0 and lim
x→0

x3 = 0,

the expression
sinx− x

x3
is an indeterminate form at 0 of the type

0

0
. Using L’Hôpital’s

Rule,

lim
x→0

sinx− x

x3
= lim

x→0

d
dx(sinx− x)

d
dxx

3
= lim

x→0

cosx− 1

3x2
.
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Because
lim
x→0

(cosx− 1) = 0 and lim
x→0

(3x2) = 0,

the expression
cosx− 1

3x2
is an indeterminate form at 0 of the type

0

0
. Using L’Hôpital’s

Rule again,

lim
x→0

sinx− x

x3
= lim

x→0

cosx− 1

3x2
= lim

x→0

d
dx(cosx− 1)

d
dx(3x

2)
= lim

x→0

− sinx

6x
.

Now,
lim
x→0

(− sinx) = 0 and lim
x→0

(6x) = 0,

so the expression
− sinx

6x
is an indeterminate form at 0 of the type

0

0
. Using L’Hôpital’s

rule for a third time,

lim
x→0

sinx− x

x3
= lim

x→0

− sinx

6x
= lim

x→0

d
dx(− sinx)

d
dx(6x)

= lim
x→0

− cosx

6
= −1

6
.

43. Because
lim

x→0+
x2 = 0 and lim

x→0+
lnx = −∞,

the expression x2 lnx is an indeterminate form at 0+ of the type 0 · ∞ . Rewrite

x2 lnx as
lnx
1
x2

=
lnx

x−2
,

which is an indeterminate form at 0+ of the type
0

0
. Using L’Hôpital’s Rule,

lim
x→0+

(x2 lnx) = lim
x→0+

lnx

x−2
= lim

x→0+

d
dx lnx
d
dxx

−2
= lim

x→0+

1
x

−2x−3
= lim

x→0+

x2

−2
= 0 .

45. Because
lim
x→∞

x = ∞ and lim
x→∞

(e1/x − 1) = 0,

the expression x(e1/x − 1) is an indeterminate form at ∞ of the type 0 · ∞ . Rewrite

x(e1/x − 1) as
e1/x − 1

1/x
,

which is an indeterminate form at ∞ of the type
0

0
. Using L’Hôpital’s Rule,

lim
x→∞

[x(e1/x−1)] = lim
x→∞

e1/x − 1

1/x
= lim

x→∞

d
dx (e

1/x − 1)
d
dx (1/x)

= lim
x→∞

−x−2e1/x

−x−2
= lim

x→∞
e1/x = e0 = 1 .

47. Because
lim

x→π/2−
secx = ∞ and lim

x→π/2−
tanx = ∞,

while
lim

x→π/2+
secx = −∞ and lim

x→π/2+
tanx = −∞,
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the expression secx− tanx is an indeterminate form at π/2 of the type ∞−∞ . Rewrite

secx− tanx as
1

cosx
− sinx

cosx
=

1− sinx

cosx
,

which is an indeterminate form at π/2 of the type
0

0
. Using L’Hôpital’s Rule,

lim
x→π/2

(secx−tanx) = lim
x→π/2

1− sinx

cosx
= lim

x→π/2

d
dx(1− sinx)

d
dx cosx

= lim
x→π/2

− cosx

− sinx
=

0

−1
= 0 .

49. Because

lim
x→1−

1

lnx
= −∞ and lim

x→1−

x

lnx
= −∞,

while

lim
x→1+

1

lnx
= ∞ and lim

x→1+

x

lnx
= ∞,

the expression
1

lnx
− x

lnx
is an indeterminate form at 1 of the type ∞−∞ . Rewrite

1

lnx
− x

lnx
as

1− x

lnx
,

which is an indeterminate form at 1 of the type
0

0
. Using L’Hôpital’s Rule,

lim
x→1

(

1

lnx
− x

lnx

)

= lim
x→1

1− x

lnx
= lim

x→1

d
dx(1 − x)

d
dx lnx

= lim
x→1

−1
1
x

=
−1

1
= −1 .

51. Because
lim

x→0+
(2x) = 0 and lim

x→0+
(3x) = 0,

the expression (2x)3x is an indeterminate form at 0+ of the type 00 . Let y = (2x)3x.
Then

ln y = ln(2x)3x = (3x) ln(2x),

which is an indeterminate form at 0+ of the type 0 · ∞. Rewrite

(3x) ln(2x) as
ln(2x)

1
3x

,

which is now an indeterminate form at 0+ of the type
∞
∞ . Using L’Hôpital’s Rule,

lim
x→0+

ln y = lim
x→0+

[(3x) ln(2x)] = lim
x→0+

ln(2x)
1
3x

= lim
x→0+

d
dx ln(2x)

d
dx

1
3x

= lim
x→0+

1
2x · 2

− 1
(3x)2 · 3 = lim

x→0+
(−3x) = 0.

Finally, because lim
x→0+

ln y = 0, it follows that

lim
x→0+

y = lim
x→0+

(2x)3x = e0 = 1 .
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53. Because
lim
x→∞

(x+ 1) = ∞ and lim
x→∞

e−x = 0,

the expression (x+1)e
−x

is an indeterminate form at∞ of the type ∞0 . Let y = (x+1)e
−x

.
Then

ln y = ln(x + 1)e
−x

= e−x ln(x+ 1),

which is an indeterminate form at ∞ of the type 0 · ∞. Rewrite

e−x ln(x+ 1) as
ln(1 + x)

ex
,

which is now an indeterminate form ∞ of the type
∞
∞ . Using L’Hôpital’s Rule,

lim
x→∞

ln y = lim
x→∞

[e−x ln(1 + x)] = lim
x→∞

ln(1 + x)

ex
= lim

x→∞

d
dx ln(1 + x)

d
dxe

x
= lim

x→∞

1
1+x

ex
= 0.

Finally, because lim
x→∞

ln y = 0, it follows that

lim
x→∞

y = lim
x→∞

(x+ 1)e
−x

= e0 = 1 .

55. Because
lim

x→0+
cscx = ∞ and lim

x→0+
sinx = 0,

the expression (cscx)sin x is an indeterminate form at 0+ of the type ∞0 . Let y =

(cscx)sin x. Then
ln y = ln(cscx)sin x = sinx ln(cscx),

which is an indeterminate form at 0+ of the type 0 · ∞. Rewrite

sinx ln(cscx) as
ln(cscx)

1
sin x

=
ln(cscx)

cscx
,

which is now an indeterminate form at 0+ of the type
∞
∞ . Using L’Hôpital’s Rule,

lim
x→0+

ln y = lim
x→0+

[sinx ln(cscx)] = lim
x→0+

ln(cscx)

cscx
= lim

x→0+

d
dx ln(cscx)

d
dx cscx

= lim
x→0+

sinx · − cscx cotx

− cscx cotx
= lim

x→0+
sinx = 0.

Finally, because lim
x→0+

ln y = 0, it follows that

lim
x→0+

y = lim
x→0+

(cscx)sin x = e0 = 1 .

57. Because
lim

x→π/2−
sinx = 1 and lim

x→π/2−
tanx = ∞,

the expression (sinx)tan x is an indeterminate form at π/2− of the type 1∞ . Let y =
(sinx)tan x. Then

ln y = ln(sinx)tan x = tanx ln(sinx),
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which is an indeterminate form at π/2− of the type 0 · ∞. Rewrite

tanx ln(sinx) as
ln(sinx)

cotx
,

which is now an indeterminate form at π/2− of the type
0

0
. Using L’Hôpital’s Rule,

lim
x→π/2−

ln y = lim
x→π/2−

[tanx ln(sinx)] = lim
x→π/2−

ln(sinx)

cotx

= lim
x→π/2−

d
dx ln(sinx)

d
dx cotx

= lim
x→π/2−

1
sin x · cosx
− csc2 x

= lim
x→π/2−

(− sinx cos x) = 0.

Finally, because lim
x→π/2−

ln y = 0, it follows that

lim
x→π/2−

y = lim
x→π/2−

(sinx)tan x = e0 = 1 .

59. Note that
cotx

cot(2x)
=

tan(2x)

tanx
;

because
lim

x→0+
tan(2x) = 0 and lim

x→0+
tanx = 0,

the expression
tan(2x)

tanx
is an indeterminate form at 0+ of the type

0

0
. Using L’Hôpital’s

Rule,

lim
x→0+

cotx

cot(2x)
= lim

x→0+

tan(2x)

tanx
= lim

x→0+

d
dx tan(2x)

d
dx tanx

= lim
x→0+

2 sec2(2x)

sec2 x
=

2

1
= 2 .

61. Because
lim

x→1/2−
ln(1− 2x) = −∞ and lim

x→1/2−
tan(πx) = ∞,

the expression
ln(1− 2x)

tan(πx)
is an indeterminate form at 1/2− of the type

∞
∞ . Using L’Hôpital’s

Rule,

lim
x→1/2−

ln(1 − 2x)

tan(πx)
= lim

x→1/2−

d
dx ln(1− 2x)

d
dx tan(πx)

= lim
x→1/2−

1
1−2x · −2

π sec2(πx)
= lim

x→1/2−

−2 cos2(πx)

π(1− 2x)
.

Now,
lim

x→1/2−
[−2 cos2(πx)] = 0 and lim

x→1/2−
[π(1 − 2x)] = 0,

so the expression
−2 cos2(πx)

π(1− 2x)
is an indeterminate form at 1/2− of the type

0

0
. Using

L’Hôpital’s Rule again,

lim
x→1/2−

ln(1− 2x)

tan(πx)
= lim

x→1/2−

−2 cos2(πx)

π(1− 2x)
= lim

x→1/2−

d
dx [−2 cos2(πx)]

d
dx [π(1 − 2x)]

= lim
x→1/2−

−4π cos(πx) · − sin(πx)

−2π
= lim

x→1/2−
[−2 sin(πx) cos(πx)] = 0 .
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63. Because
lim
x→∞

(x4 + x3) = ∞ and lim
x→∞

(ex + 1) = ∞,

the expression
x4 + x3

ex + 1
is an indeterminate form at ∞ of the type

∞
∞ . Using L’Hôpital’s

Rule,

lim
x→∞

x4 + x3

ex + 1
= lim

x→∞

d
dx(x

4 + x3)
d
dx(e

x + 1)
= lim

x→∞

4x3 + 3x2

ex
.

Because
lim
x→∞

(4x3 + 3x2) = ∞ and lim
x→∞

ex = ∞,

the expression
4x3 + 3x2

ex
is an indeterminate form at ∞ of the type

∞
∞ . Using L’Hôpital’s

Rule again,

lim
x→∞

x4 + x3

ex + 1
= lim

x→∞

4x3 + 3x2

ex
= lim

x→∞

d
dx(4x

3 + 3x2)
d
dxe

x
= lim

x→∞

12x2 + 6x

ex
.

Now,
lim
x→∞

(12x2 + 6x) = ∞ and lim
x→∞

ex = ∞,

so the expression
12x2 + 6x

ex
is an indeterminate form at ∞ of the type

∞
∞ . Using

L’Hôpital’s Rule a third time,

lim
x→∞

x4 + x3

ex + 1
= lim

x→∞

12x2 + 6x

ex
= lim

x→∞

d
dx (12x

2 + 6x)
d
dxe

x
= lim

x→∞

24x+ 6

ex
.

Finally, because
lim
x→∞

(24x+ 6) = ∞ and lim
x→∞

ex = ∞,

the expression
24x+ 6

ex
is an indeterminate form at ∞ of the type

∞
∞ . Using L’Hôpital’s

Rule a fourth time,

lim
x→∞

x4 + x3

ex + 1
= lim

x→∞

24x+ 6

ex
= lim

x→∞

d
dx(24x+ 6)

d
dxe

x
= lim

x→∞

24

ex
= 0 .

65. Because
lim
x→0

(xe4x − x) = 0 and lim
x→0

[1− cos(2x)] = 0,

the expression
xe4x − x

1− cos(2x)
is an indeterminate form at 0 of the type

0

0
. Using L’Hôpital’s

Rule,

lim
x→0

xe4x − x

1− cos(2x)
= lim

x→0

d
dx(xe

4x − x)
d
dx [1− cos(2x)]

= lim
x→0

4xe4x + e4x − 1

2 sin(2x)
.

Now,
lim
x→0

(4xe4x + e4x − 1) = 0 and lim
x→0

[2 sin(2x)] = 0,

so the expression
4xe4x + e4x − 1

2 sin(2x)
is an indeterminate form at 0 of the type

0

0
. Using

L’Hôpital’s Rule again,

lim
x→0

xe4x − x

1− cos(2x)
= lim

x→0

4xe4x + e4x − 1

2 sin(2x)
= lim

x→0

d
dx(4xe

4x + e4x − 1)
d
dx [2 sin(2x)]

= lim
x→0

16xe4x + 4e4x + 4e4x

4 cos(2x)
=

8

4
= 2 .
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67. Because
lim
x→0

tan−1 x = 0 and lim
x→0

x = 0,

the expression
tan−1 x

x
is an indeterminate form at 0 of the type

0

0
. Using L’Hôpital’s

Rule,

lim
x→0

tan−1 x

x
= lim

x→0

d
dx tan−1 x

d
dxx

= lim
x→0

1
1+x2

1
=

1

1
= 1 .

69. Because
lim
x→0

(cos x− 1) = 0 and lim
x→0

[cos(2x)− 1] = 0,

the expression
cosx− 1

cos(2x)− 1
is an indeterminate form at 0 of the type

0

0
. Using L’Hôpital’s

Rule,

lim
x→0

cosx− 1

cos(2x)− 1
= lim

x→0

d
dx(cosx− 1)
d
dx [cos(2x)− 1]

= lim
x→0

− sinx

−2 sin(2x)
= lim

x→0

sinx

2 sin(2x)
.

Now,
lim
x→0

sinx = 0 and lim
x→0

[2 sin(2x)] = 0,

so the expression
sinx

2 sin(2x)
is an indeterminate form at 0 of the type

0

0
. Using L’Hôpital’s

Rule again,

lim
x→0

cosx− 1

cos(2x)− 1
= lim

x→0

sinx

2 sin(2x)
= lim

x→0

d
dx sinx

d
dx [2 sin(2x)]

= lim
x→0

cosx

4 cos(2x)
=

1

4
.

71. Because
lim

x→0+
x1/2 = 0 and lim

x→0+
lnx = −∞,

the expression x1/2 lnx is an indeterminate form at 0+ of the type 0 · ∞. Rewrite

x1/2 lnx as
lnx
1

x1/2

=
lnx

x−1/2
,

which is an indeterminate form at 0+ of the type
∞
∞ . Using L’Hôpital’s Rule,

lim
x→0+

(x1/2 lnx) = lim
x→0+

lnx

x−1/2
= lim

x→0+

d
dx lnx
d
dxx

−1/2
= lim

x→0+

1
x

− 1
2x

−3/2
= lim

x→0+
(−2x1/2) = 0 .

73. Because
lim

x→π/2−
tanx = ∞ and lim

x→π/2−
ln(sinx) = 0,

while
lim

x→π/2+
tanx = −∞ and lim

x→π/2+
ln(sinx) = 0,

the expression tanx ln(sinx) is an indeterminate form at π/2 of the type 0 · ∞. Rewrite

tanx ln(sinx) as
ln(sinx)

1
tan x

=
ln(sinx)

cotx
,
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which is an indeterminate form at π/2 of the type
0

0
. Using L’Hôpital’s Rule,

lim
x→π/2

[tanx ln(sinx)] = lim
x→π/2

ln(sinx)

cotx
= lim

x→π/2

d
dx ln(sinx)

d
dx cotx

= lim
x→π/2

1
sin x · cosx
− csc2 x

= lim
x→π/2

(− sinx cosx) = 0 .

75. Because
lim

x→0−
cscx = −∞ and lim

x→0−
ln(x+ 1) = 0,

while
lim

x→0+
cscx = ∞ and lim

x→0+
ln(x+ 1) = 0,

the expression cscx ln(x+ 1) is an indeterminate form at 0 of the type 0 · ∞. Rewrite

cscx ln(x+ 1) as
ln(x+ 1)

sinx
,

which is an indeterminate form at 0 of the type
0

0
. Using L’Hôpital’s Rule,

lim
x→0

[cscx ln(x + 1)] = lim
x→0

ln(x+ 1)

sinx
= lim

x→0

d
dx ln(x+ 1)

d
dx sinx

= lim
x→0

1
x+1

cosx
=

1

1
= 1 .

77. Because

lim
x→a−

(a2 − x2) = 0 and lim
x→a−

tan
(πx

2a

)

= ∞,

while

lim
x→a+

(a2 − x2) = 0 and lim
x→a+

tan
(πx

2a

)

= −∞,

the expression (a2−x2) tan
(πx

2a

)

is an indeterminate form at a of the type 0 ·∞. Rewrite

(a2 − x2) tan
(πx

2a

)

as
a2 − x2

cot
(

πx
2a

) ,

which is an indeterminate form at a of the type
0

0
. Using L’Hôpital’s Rule,

lim
x→a

[

(a2 − x2) tan
(πx

2a

)]

= lim
x→a

a2 − x2

cot
(

πx
2a

) = lim
x→a

d
dx(a

2 − x2)
d
dx cot

(

πx
2a

) = lim
x→a

−2x

− π
2a csc2

(

πx
2a

) =
−2a

− π
2a

=
4a2

π
.

79. Because

lim
x→1−

1

lnx
= −∞ and lim

x→1−

1

x− 1
= −∞,

while

lim
x→1+

1

lnx
= ∞ and lim

x→1+

1

x− 1
= ∞,

the expression
1

lnx
− 1

x− 1
is an indeterminate form at 1 of the type ∞−∞. Rewrite

1

lnx
− 1

x− 1
as

x− 1− lnx

(x− 1) lnx
,
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which is an indeterminate form at 1 of the type
0

0
. Using L’Hôpital’s Rule,

lim
x→1

(

1

lnx
− 1

x− 1

)

= lim
x→1

x− 1− lnx

(x− 1) lnx

= lim
x→1

d
dx(x− 1− lnx)
d
dx [(x− 1) lnx]

= lim
x→1

1− 1
x

(x − 1) · 1
x + ln x

= lim
x→1

x− 1

x− 1 + x ln x
.

Now,
lim
x→1

(x− 1) = 0 and lim
x→1

(x − 1 + x lnx) = 0,

so the expression
x− 1

x− 1 + x lnx
is an indeterminate form at 1 of the type

0

0
. Using

L’Hôpital’s Rule again,

lim
x→1

(

1

lnx
− 1

x− 1

)

= lim
x→1

x− 1

x− 1 + x lnx
= lim

x→1

d
dx(x− 1)

d
dx(x− 1 + x ln x)

= lim
x→1

1

1 + x · 1
x + lnx

=
1

2
.

81. Because
lim

x→π/2−
(x tan x) = ∞ and lim

x→π/2−

π

2
secx = ∞,

while
lim

x→π/2+
(x tanx) = −∞ and lim

x→π/2+

π

2
secx = −∞,

the expression x tanx− π

2
secx is an indeterminate form at π/2 of the type ∞−∞. Rewrite

x tanx− π

2
secx as x

sinx

cosx
− π

2

1

cosx
=
x sinx− π

2

cosx
,

which is an indeterminate form at π/2 of the type
0

0
. Using L’Hôpital’s Rule,

lim
x→π/2

(

x tanx− π

2
secx

)

= lim
x→π/2

x sinx− π
2

cosx
= lim

x→π/2

d
dx

(

x sinx− π
2

)

d
dx cosx

= lim
x→π/2

x cos x+ sinx

− sinx
=

1

−1
= −1 .

83. Because
lim

x→1−
(1− x) = 0 and lim

x→1−
tan(πx) = 0,

the expression (1 − x)tan(πx) is an indeterminate form at 1− of the type 00. Let y =
(1 − x)tan(πx). Then

ln y = ln(1 − x)tan(πx) = tan(πx) ln(1− x),

which is an indeterminate form at 1− of the type 0 · ∞. Rewrite

tan(πx) ln(1− x) as
ln(1− x)

cot(πx)
,

which is now an indeterminate form at 1− of the type
∞
∞ . Using L’Hôpital’s Rule,

lim
x→1−

ln y = lim
x→1−

[tan(πx) ln(1− x)] = lim
x→1−

ln(1 − x)

cot(πx)

= lim
x→1−

d
dx ln(1 − x)
d
dx cot(πx)

= lim
x→1−

−1
1−x

−π csc2(πx) = lim
x→1−

sin2(πx)

π(1 − x)
.
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Now,
lim

x→1−
sin2(πx) = 0 and lim

x→1−
[π(1− x)] = 0,

so the expression
sin2(πx)

π(1− x)
is an indeterminate form at 1− of the type

0

0
. Using L’Hôpital’s

Rule again,

lim
x→1−

ln y = lim
x→1−

sin2(πx)

π(1− x)
= lim

x→1−

d
dx sin2(πx)
d
dx [π(1− x)]

= lim
x→1−

2π sin(πx) cos(πx)

−π = 0.

Finally, because lim
x→1−

ln y = 0, it follows that

lim
x→1−

y = lim
x→1−

(1− x)tan(πx) = e0 = 1 .

85. Because

lim
x→0−

sinx

x
= 1 and lim

x→0−

1

x
= −∞,

while

lim
x→0+

sinx

x
= 1 and lim

x→0+

1

x
= ∞,

the expression

(

sinx

x

)1/x

is an indeterminate form at 0 of the type 1∞. Let y =

(

sinx

x

)1/x

. Then

ln y = ln

(

sinx

x

)1/x

=
1

x
ln

(

sinx

x

)

=
ln
(

sin x
x

)

x
,

which is an indeterminate form at 0 of the type
0

0
. Using L’Hôpital’s Rule,

lim
x→0

ln y = lim
x→0

ln
(

sin x
x

)

x
= lim

x→0

d
dx ln

(

sin x
x

)

d
dxx

= lim
x→0

x
sin x · x cosx−sin x

x2

1
= lim

x→0

x cosx− sinx

x sinx
.

Now,
lim
x→0

(x cosx− sinx) = 0 and lim
x→0

(x sinx) = 0,

so the expression
x cosx− sinx

x sinx
is an indeterminate form at 0 of the type

0

0
. Using

L’Hôpital’s Rule again,

lim
x→0

ln y = lim
x→0

x cosx− sinx

x sinx
= lim

x→0

d
dx(x cos x− sinx)

d
dx(x sinx)

= lim
x→0

−x sinx+ cosx− cosx

x cos x+ sinx
= lim

x→0

−x sinx
x cos x+ sinx

.

Continuing,
lim
x→0

(−x sinx) = 0 and lim
x→0

(x cos x+ sinx) = 0,

so the expression
−x sinx

x cosx+ sinx
is an indeterminate form at 0 of the type

0

0
. Using

L’Hôpital’s Rule a third time,

lim
x→0

ln y = lim
x→0

−x sinx
x cos x+ sinx

= lim
x→0

d
dx(−x sinx)

d
dx(x cos x+ sinx)

= lim
x→0

−x cosx− sinx

−x sinx+ cosx+ cosx
= 0.
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Finally, because lim
x→0

ln y = 0, it follows that

lim
x→0

y = lim
x→0

(

sinx

x

)1/x

= e0 = 1 .

87. Because
lim

x→π/2−
tanx = ∞ and lim

x→π/2−
cosx = 0,

the expression (tanx)cos x is an indeterminate form at π/2− of the type ∞0. Let y =
(tanx)cos x. Then

ln y = ln(tanx)cos x = cosx ln(tanx),

which is an indeterminate form at π/2− of the type 0 · ∞. Rewrite

cosx ln(tanx) as
ln(tanx)

secx
,

which is now an indeterminate form at π/2− of the type
∞
∞ . Using L’Hôpital’s Rule,

lim
x→π/2−

ln y = lim
x→π/2−

[cosx ln(tanx)] = lim
x→π/2−

ln(tanx)

secx

= lim
x→π/2−

d
dx ln(tanx)

d
dx secx

= lim
x→π/2−

cotx · sec2 x
secx tanx

= lim
x→π/2−

cosx

sin2 x
= 0.

Finally, because lim
x→π/2−

ln y = 0, it follows that

lim
x→π/2−

y = lim
x→π/2−

(tanx)cos x = e0 = 1 .

89. Because
lim
x→0

coshx = 1 and lim
x→0

ex = 1,

the expression (coshx)e
x

is of the form 11, which is not an indeterminate form; rather the
value of this expression tends toward 1. Therefore,

lim
x→0

(coshx)e
x

= 1 .

Applications and Extensions

91. Let

w(t) =
Kert

K
40 + ert − 1

,

where K = 366, r = 0.283, and t = 0 represents the year 2000.

(a) Because r > 0,

lim
t→∞

Kert = ∞, and lim
t→∞

(

K

40
+ ert − 1

)

= ∞,

w(t) is an indeterminate form at ∞ of the type
∞
∞ . Using L’Hôpital’s Rule,

lim
t→∞

w(t) = lim
t→∞

Kert

K
40 + ert − 1

= lim
t→∞

d
dtKe

rt

d
dt

(

K
40 + ert − 1

) = lim
t→∞

Krert

rert
= lim

t→∞
K = K = 366 .
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(b) If the population of wolves in Wyoming outside of Yellowstone National Park continues

to follow the given logistic curve, in the long run, the population will reach K = 366 wolves .

(c) The figure below displays the graph of the wolf population.
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93. (a) Let

I =
E

R
(1− e−Rt/L).

First,

lim
t→∞

I(t) = lim
t→∞

E

R
(1 − e−Rt/L) =

E

R
· 1 =

E

R
.

Next, for the limit as R → 0+, note that

lim
R→0+

E(1− e−Rt/L) = 0 and lim
R→0+

R = 0,

so I(t) is an indeterminate form at R = 0+ of the type
0

0
. Using L’Hôpital’s Rule,

lim
R→0+

I(t) = lim
R→0+

E(1 − e−Rt/L)

R
= lim

R→0+

d
dR [E(1 − e−Rt/L)]

d
dRR

= lim
R→0+

E t
Le

−Rt/L

1
=

Et

L
.

(b) After the circuit has been active for a long time, the current will level out at the
value E/R. On the other hand, in the limit as the resistance goes to zero, the current
becomes a linear function of time, I(t) = Et/L.

95. Let n ≥ 1 be an integer. Because

lim
x→∞

lnx = ∞ and lim
x→∞

xn = ∞,

the expression
lnx

xn
is an indeterminate form at ∞ of the type

∞
∞ . Using L’Hôpital’s rule,

lim
x→∞

lnx

xn
= lim

x→∞

d
dx lnx
d
dxx

n
= lim

x→∞

1
x

nxn−1
= lim

x→∞

1

nxn
= 0,

because n ≥ 1.

97. Because
lim

x→0+
(cosx+ 2 sinx) = 1 and lim

x→0+
cotx = ∞,
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the expression (cosx + 2 sinx)cot x is an indeterminate form at 0+ of the type 1∞. Let
y = (cosx+ 2 sinx)cot x. Then

ln y = ln(cosx+ 2 sinx)cot x = cotx ln(cos x+ 2 sinx),

which is an indeterminate form at 0+ of the type 0 · ∞. Rewrite

cotx ln(cosx+ 2 sinx) as
ln(cosx+ 2 sinx)

tanx
,

which is now an indeterminate form at 0+ of the type
0

0
. Using L’Hôpital’s Rule,

lim
x→0+

ln y = lim
x→0+

[cotx ln(cosx+ 2 sinx)] = lim
x→0+

ln(cosx+ 2 sinx)

tanx

= lim
x→0+

d
dx ln(cosx+ 2 sinx)

d
dx tanx

= lim
x→0+

1
cos x+2 sin x · (− sinx+ 2 cosx)

sec2 x
=

1(2)

1
= 2.

Finally, because lim
x→0+

ln y = 2, it follows that

lim
x→0+

y = lim
x→0+

(cos x+ 2 sinx)cotx = e2.

99. Using the properties of the natural logarithm function,

ln(x + 1)− ln(x− 1) = ln
x+ 1

x− 1
,

so

lim
x→∞

[ln(x + 1)− ln(x− 1)] = lim
x→∞

ln
x+ 1

x− 1
= ln

(

lim
x→∞

x+ 1

x− 1

)

.

Now,
lim
x→∞

(x+ 1) = ∞ and lim
x→∞

(x− 1) = ∞,

so the expression
x+ 1

x− 1
is an indeterminate form at ∞ of the type

∞
∞ . Using L’Hôpital’s

Rule,

lim
x→∞

x+ 1

x− 1
= lim

x→∞

d
dx(x+ 1)
d
dx(x− 1)

= lim
x→∞

1

1
= 1.

Therefore,

lim
x→∞

[ln(x+ 1)− ln(x− 1)] = ln

(

lim
x→∞

x+ 1

x− 1

)

= ln 1 = 0 .

101. Let n be an integer. If n < 0, then −n > 0, lim
x→0+

x−n = 0, and

lim
x→0+

e−1/x2

xn
= lim

x→0+
(x−ne−1/x2

) = 0.

If n = 0, then

lim
x→0+

e−1/x2

xn
= lim

x→0+
e−1/x2

= 0.

Finally, suppose n > 0. Further suppose that k is the smallest positive integer such that
−n+ 2k ≥ 0. Because

lim
x→0+

e1/x
2

= ∞ and lim
x→0+

x−c = ∞
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for c > 0, the expression
x−c

e1/x2
=
e−1/x2

xc
is an indeterminate form at 0+ of the type

∞
∞

for all c > 0. Using L’Hôpital’s Rule k times yields

lim
x→0+

e−1/x2

xn
= lim

x→0+

x−n

e1/x2 = lim
x→0+

−nx−n−1

e1/x2 · − 2
x3

=
n

2
lim

x→0+

x−n+2

e1/x2

=
n(n− 2)

22
lim

x→0+

x−n+4

e1/x2

...

=
n(n− 2) · · · (n− 2k + 2)

2k
lim

x→0+

x−n+2k

e1/x2 .

If −n+ 2k = 0, then

lim
x→0+

x−n+2k

e1/x2 = lim
x→0+

1

e1/x2 = 0;

otherwise,

lim
x→0+

x−n+2k

e1/x2 = lim
x→0+

1

xn−2ke1/x2 = 0.

Therefore,

lim
x→0+

e−1/x2

xn
= 0.

103. Because

lim
x→∞

(

1 +
a

x

)

= 1 and lim
x→∞

x = ∞,

the expression
(

1 +
a

x

)x

is an indeterminate form at ∞ of the type 1∞. Let y =
(

1 +
a

x

)x

.

Then

ln y = ln
(

1 +
a

x

)x

= x ln
(

1 +
a

x

)

,

which is an indeterminate form at ∞ of the type 0 · ∞. Rewrite

x ln
(

1 +
a

x

)

as
ln
(

1 + a
x

)

1
x

,

which is now an indeterminate form at ∞ of the type
0

0
. Using L’Hôpital’s Rule,

lim
x→∞

ln y = lim
x→∞

[

x ln
(

1 +
a

x

)]

= lim
x→∞

ln
(

1 + a
x

)

1
x

= lim
x→∞

d
dx ln

(

1 + a
x

)

d
dx

1
x

= lim
x→∞

1
1+ a

x
· − a

x2

− 1
x2

= lim
x→∞

a

1 + a
x

=
a

1
= a.

Finally, because lim
x→∞

ln y = a, it follows that

lim
x→∞

y = lim
x→∞

(

1 +
a

x

)x

= ea.

105. (a) Note that

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

e−1/x2 − 0

x
= lim

x→0

e−1/x2

x
= 0

by Problem 100. Because this limit exists, it follows that f is differentiable at 0;

moreover, f ′(0) = 0 .
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(b) The figure below displays the graph of f .
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107. Suppose the expression
f(x)

g(x)
is an indeterminate form at −∞ of the type

0

0
. Then

lim
x→−∞

f(x) = 0 and lim
x→−∞

g(x) = 0.

Define

F (t) = f

(

1

t

)

and G(t) = g

(

1

t

)

.

Now, consider the limit

lim
x→−∞

f(x)

g(x)
.

Make the substitution t = 1/x. Then, as x→ −∞, t→ 0−, and

lim
x→−∞

f(x)

g(x)
= lim

t→0−

f
(

1
t

)

g
(

1
t

) = lim
t→0−

F (t)

G(t)
.

Because

lim
t→0−

F (t) = lim
t→0−

f

(

1

t

)

= lim
x→−∞

f(x) = 0

and

lim
t→0−

G(t) = lim
t→0−

g

(

1

t

)

= lim
x→−∞

g(x) = 0,

the expression
F (t)

G(t)
is an indeterminate form at 0− of the type

0

0
. By the partial proof of

L’Hôpital’s Rule provided in the text, it follows that

lim
t→0−

F (t)

G(t)
= lim

t→0−

F ′(t)

G′(t)
.

By the definition of F and G

F ′(t) = − 1

t2
f ′
(

1

t

)

and G′(t) = − 1

t2
g′
(

1

t

)

,

so

lim
x→−∞

f(x)

g(x)
= lim

t→0−

F (t)

G(t)
= lim

t→0−

F ′(t)

G′(t)
= lim

t→0−

− 1
t2 f

′( 1
t

)

− 1
t2 g

′
(

1
t

) = lim
t→0−

f ′( 1
t

)

g′
(

1
t

) = lim
x→−∞

f ′(x)

g′(x)
,

as desired.
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Challenge Problems

109. (a) Because

lim
x→∞

(

1 +
1

x

)

= 1 and lim
x→∞

(−x2) = −∞,

the expression

(

1 +
1

x

)−x2

is an indeterminate form at ∞ of the type 1∞. Let

y =

(

1 +
1

x

)−x2

. Then

ln y = ln

(

1 +
1

x

)−x2

= −x2 ln
(

1 +
1

x

)

,

which is an indeterminate form at ∞ of the type 0 · ∞. Rewrite

−x2 ln
(

1 +
1

x

)

as
ln
(

1 + 1
x

)

− 1
x2

,

which is now an indeterminate form at ∞ of the type
0

0
. Using L’Hôpital’s Rule,

lim
x→∞

ln y = lim
x→∞

[

−x2 ln
(

1 +
1

x

)]

= lim
x→∞

ln
(

1 + 1
x

)

− 1
x2

= lim
x→∞

d
dx ln

(

1 + 1
x

)

d
dx

(

− 1
x2

) = lim
x→∞

1
1+ 1

x

· − 1
x2

2
x3

= lim
x→∞

−x
2
(

1 + 1
x

) = −∞.

Finally, because lim
x→∞

ln y = −∞, it follows that

lim
x→∞

y = lim
x→∞

(

1 +
1

x

)−x2

= lim
x→∞

eln y = 0 .

(b) Because

lim
x→∞

(

1 +
ln a

x

)

= 1 and lim
x→∞

x = ∞,

the expression

(

1 +
ln a

x

)x

is an indeterminate form at ∞ of the type 1∞. Let

y =

(

1 +
ln a

x

)x

. Then

ln y = ln

(

1 +
ln a

x

)x

= x ln

(

1 +
ln a

x

)

,

which is an indeterminate form at ∞ of the type 0 · ∞. Rewrite

x ln

(

1 +
ln a

x

)

as
ln
(

1 + ln a
x

)

1
x

,

which is now an indeterminate form at ∞ of the type
0

0
. Using L’Hôpital’s Rule,

lim
x→∞

ln y = lim
x→∞

[

x ln

(

1 +
ln a

x

)]

= lim
x→∞

ln
(

1 + ln a
x

)

1
x

= lim
x→∞

d
dx ln

(

1 + lna
x

)

d
dx

(

1
x

) = lim
x→∞

1
1+ ln a

x

· − lna
x2

− 1
x2

= lim
x→∞

ln a

1 + lna
x

= ln a.
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Finally, because lim
x→∞

ln y = ln a, it follows that

lim
x→∞

y = lim
x→∞

(

1 +
ln a

x

)x

= elna = a .

(c) Because

lim
x→∞

(

1 +
1

x

)

= 1 and lim
x→∞

x2 = ∞,

the expression

(

1 +
1

x

)x2

is an indeterminate form at ∞ of the type 1∞. Let y =

(

1 +
1

x

)x2

. Then

ln y = ln

(

1 +
1

x

)x2

= x2 ln

(

1 +
1

x

)

,

which is an indeterminate form at ∞ of the type 0 · ∞. Rewrite

x2 ln

(

1 +
1

x

)

as
ln
(

1 + 1
x

)

1
x2

,

which is now an indeterminate form at ∞ of the type
0

0
. Using L’Hôpital’s Rule,

lim
x→∞

ln y = lim
x→∞

[

x2 ln

(

1 +
1

x

)]

= lim
x→∞

ln
(

1 + 1
x

)

1
x2

= lim
x→∞

d
dx ln

(

1 + 1
x

)

d
dx

(

1
x2

) = lim
x→∞

1
1+ 1

x

· − 1
x2

− 2
x3

= lim
x→∞

x

2
(

1 + 1
x

) = ∞.

Finally, because lim
x→∞

ln y = ∞, it follows that

lim
x→∞

y = lim
x→∞

(

1 +
1

x

)x2

= lim
x→∞

eln y = ∞ .

(d) This limit does not exist. To show this, first let x = nπ, where n is a natural number.
As n→ ∞, x→ ∞, and

(

1 +
sinx

x

)x

=

(

1 +
sin(nπ)

nπ

)nπ

= 1nπ = 1.

Next, let x =
π

2
+ 2nπ, where n is a natural number. Again, as n→ ∞, x→ ∞, but

(

1 +
sinx

x

)x

=

(

1 +
sin(π/2 + 2nπ)

π/2 + 2nπ

)π/2+2nπ

=

(

1 +
1

π/2 + 2nπ

)π/2+2nπ

→ e.

Because the value of
(

1 +
sinx

x

)x

does not approach a single number as x→ ∞, the indicated limit does not exist .
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(e) Because

lim
x→∞

ex = ∞ and lim
x→∞

− 1

lnx
= 0,

the expression (ex)−1/ ln x is an indeterminate form at ∞ of the type ∞0. Let y =
(ex)−1/ ln x. Then

ln y = ln(ex)−1/ lnx = − 1

lnx
ln ex = − x

lnx
,

which is an indeterminate form at ∞ of the type
∞
∞ . Using L’Hôpital’s Rule,

lim
x→∞

ln y = lim
x→∞

− x

lnx
= lim

x→∞
−

d
dxx
d
dx lnx

= lim
x→∞

− 1
1
x

= lim
x→∞

−x = −∞.

Finally, because lim
x→∞

ln y = −∞, it follows that

lim
x→∞

y = lim
x→∞

(ex)1−/ ln x = lim
x→∞

eln y = 0 .

(f) Because
[(

1

a

)x]−1/x

=

(

1

a

)−1

= a

for all x,

lim
x→∞

[(

1

a

)x]−1/x

= a .

(g) Because

lim
x→∞

x = ∞ and lim
x→∞

1

x
= 0,

the expression x1/x is an indeterminate form at ∞ of the type ∞0. Let y = x1/x.
Then

ln y = lnx1/x =
1

x
lnx =

lnx

x
,

which is an indeterminate form at ∞ of the type
∞
∞ . Using L’Hôpital’s Rule,

lim
x→∞

ln y = lim
x→∞

lnx

x
= lim

x→∞

d
dx lnx

d
dxx

= lim
x→∞

1
x

1
= lim

x→∞

1

x
= 0.

Finally, because lim
x→∞

ln y = 0, it follows that

lim
x→∞

y = lim
x→∞

x1/x = e0 = 1 .

(h) Because

(ax)1/x = a

for all x,
lim
x→∞

(ax)1/x = a .

(i) Because

[(2 + sinx)x]1/x = (2 + sinx)

for all x,
lim
x→∞

[(2 + sinx)x]1/x = lim
x→∞

(2 + sinx)

which does not exist because sinx never approaches a single number as x→ ∞.
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(j) For x > 0,

x−1/ ln x =
(

elnx
)−1/ ln x

= e−1,

so

lim
x→0+

x−1/ ln x = lim
x→0+

e−1 = e−1 .

111. Let f be a function whose derivatives of all orders exist.

(a) Because
lim
h→0

[f(x+ 2h)− 2f(x+ h) + f(x)] = 0 and lim
h→0

h2 = 0,

the expression
f(x+ 2h)− 2f(x+ h) + f(x)

h2
is an indeterminate form at h = 0 of

the type
0

0
. Using L’Hôpital’s Rule,

lim
h→0

f(x+ 2h)− 2f(x+ h) + f(x)

h2
= lim

h→0

d
dh [f(x+ 2h)− 2f(x+ h) + f(x)]

d
dhh

2

= lim
h→0

2f ′(x+ 2h)− 2f ′(x+ h)

2h

= lim
h→0

f ′(x+ 2h)− f ′(x+ h)

h
.

Now,
lim
h→0

[f ′(x+ 2h)− f ′(x+ h)] = 0 and lim
h→0

h = 0,

so the expression
f ′(x+ 2h)− f ′(x+ h)

h
is an indeterminate form at h = 0 of the

type
0

0
. Using L’Hôpital’s Rule again,

lim
h→0

f(x+ 2h)− 2f(x+ h) + f(x)

h2
= lim

h→0

f ′(x+ 2h)− f ′(x + h)

h

= lim
h→0

d
dh [f

′(x+ 2h)− f ′(x+ h)]
d
dhh

= lim
h→0

2f ′′(x+ 2h)− f ′′(x+ h)

1
= f ′′(x) .

(b) Because

lim
h→0

[f(x+ 3h)− 3f(x+ 2h) + 3f(x+ h)− f(x)] = 0 and lim
h→0

h3 = 0,

the expression
f(x+ 3h)− 3f(x+ 2h) + 3f(x+ h)− f(x)

h3
is an indeterminate form

at h = 0 of the type
0

0
. Using L’Hôpital’s Rule,

lim
h→0

f(x+ 3h)− 3f(x+ 2h) + 3f(x+ h)− f(x)

h3

= lim
h→0

d
dh [f(x+ 3h)− 3f(x+ 2h) + 3f(x+ h)− f(x)]

d
dhh

3

= lim
h→0

3f ′(x+ 3h)− 6f ′(x + 2h) + 3f ′(x+ h)

3h2

= lim
h→0

f ′(x+ 3h)− 2f ′(x+ 2h) + f ′(x+ h)

h2
.
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Now,

lim
h→0

[f ′(x+ 3h)− 2f ′(x + 2h) + f ′(x+ h)] = 0 and lim
h→0

h2 = 0,

so the expression
f ′(x+ 3h)− 2f ′(x+ 2h) + f ′(x+ h)

h2
is an indeterminate form at

h = 0 of the type
0

0
. Using L’Hôpital’s Rule again,

lim
h→0

f(x+ 3h)− 3f(x+ 2h) + 3f(x+ h)− f(x)

h3

= lim
h→0

f ′(x+ 3h)− 2f ′(x+ 2h) + f ′(x+ h)

h2

= lim
h→0

d
dh [f

′(x+ 3h)− 2f ′(x + 2h) + f ′(x+ h)]
d
dhh

2

= lim
h→0

3f ′′(x+ 3h)− 4f ′′(x+ 2h) + f ′′(x+ h)

2h
.

Finally,

lim
h→0

[3f ′′(x+ 3h)− 4f ′′(x+ 2h) + f ′′(x + h)] = 0 and lim
h→0

(2h) = 0,

so the expression
3f ′′(x+ 3h)− 4f ′′(x + 2h) + f ′′(x+ h)

2h
is an indeterminate form

at h = 0 of the type
0

0
. Using L’Hôpital’s Rule a third time

lim
h→0

f(x+ 3h)− 3f(x+ 2h) + 3f(x+ h)− f(x)

h3

= lim
h→0

3f ′′(x + 3h)− 4f ′′(x+ 2h) + f ′′(x+ h)

2h

= lim
h→0

d
dh [3f

′′(x+ 3h)− 4f ′′(x+ 2h) + f ′′(x+ h)]
d
dh (2h)

= lim
h→0

9f ′′′(x+ 3h)− 8f ′′′(x+ 2h) + f ′′′(x+ h)

2

=
2f ′′′(x)

2
= f ′′′(x) .

(c) Recognize that in the numerator of each limit, the coefficients on the values of f (1,
−2, 1 in part (a) and 1, −3, 3, −1 in part (b)) are the coefficients in (x − 1)2 and
(x− 1)3, respectively; that is, they are binomial coefficients. Therefore, for a positive
integer n,

lim
h→0

∑n
k=0(−1)k n!

k!(n−k)!f(x+ (n− k)h)

hn
= f (n)(x) .

113. Let f(t, x) =
xt+1 − 1

t+ 1
, where x > 0 and t 6= −1.

(a) Let x = x0. Because

lim
t→−1

(xt+1
0 − 1) = 0 and lim

t→−1
(t+ 1) = 0,
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the expression f(t, x0) =
xt+1
0 − 1

t+ 1
is an indeterminate form at t = −1 of the type

0

0
.

Using L’Hôpital’s Rule,

lim
t→−1

f(t, x0) = lim
t→−1

xt+1
0 − 1

t+ 1
= lim

t→−1

d
dt(x

t+1
0 − 1)

d
dt (t+ 1)

= lim
t→−1

xt+1
0 lnx0

1
= lnx0.

(b) The function f(t, x) is continuous for t 6= −1. Based on the result from part (a),
define

F (t, x) =

{

f(t, x), t 6= −1
lnx, t = −1.

The function F (t, x) is then continuous for all t.

(c) Based on part (b), for t fixed but not equal to −1,

d

dx
F (t, x) =

d

dx
f(t, x) =

d

dx

(

xt+1 − 1

t+ 1

)

=
1

t+ 1
· (t+ 1)xt = xt.

For t = −1,
d

dx
F (t, x) =

d

dx
lnx =

1

x
= x−1 = xt.

AP
R©

Practice Problems

1. lim
x→0

e4x − 1

sin (2x)

Since lim
x→0

(

e4x − 1
)

= 0 and lim
x→0

[sin (2x)] = 0, lim
x→0

e4x−1
sin (2x) is an indeterminate form at 0

of the type 0
0 .

Using L’Hôpital’s Rule, lim
x→0

e4x−1
sin (2x) = lim

x→0

4e4x

2 cos (2x) =
4

2
= 2 .

CHOICE B

3. lim
x→0

x cscx = lim
x→0

x

sinx
= lim

x→0

1
(

x
sin x

) =
lim (1)

lim
x→0

sin x
x

=
1

1
= 1 .

Alternatively, for lim
x→0

x
sin x , limx→0

(x) = 0 and lim
x→0

(sinx) = 0, so lim
x→0

x
sin x is an indeterminate

form at 0 of the type 0
0 and L’Hôpital’s Rule is applicable.

Therefore, using L’Hôpital’s Rule, lim
x→0

x
sin x = lim

x→0

1
cosx =

1

1
= 1 .

CHOICE B

5. lim
x→∞

lnx

xk

Since lim
x→∞

(lnx) = ∞ and lim
x→∞

(

xk
)

= ∞, lim
x→∞

lnx
xk is an indeterminate form of the type

∞
∞ and L’Hôpital’s Rule is applicable.
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Therefore, lim
x→∞

ln x
xk = lim

x→∞
1/x

kxk−1 = lim
x→∞

1
kxk = 0 .

CHOICE A

7. lim
x→0+

(1− 4x)
cotx

Let y = (1− 4x)
cotx

. Then

ln y = ln (1− 4x)
cotx

= cotx ln (1− 4x)

=
ln (1− 4x)

tanx

lim
x→0+

(ln y) = lim
x→0+

ln (1− 4x)

tanx
.

Since lim
x→0+

[ln (1− 4x)] = ln [1− 4(0)] = 0 and lim
x→0+

(tanx) = 0, lim
x→0+

(

ln (1−4x)
tan x

)

is an

indeterminate form at 0+ of the type 0
0 and L’Hôpital’s Rule is applicable.

Therefore, lim
x→0+

(ln y) = lim
x→0+

ln (1−4x)
tan x = lim

x→0+

−4

1−4x

sec2 x = lim
x→0+

4 cos2 x
4x−1 = −4.

Since lim
x→0+

(ln y) = −4, we can conclude that lim
x→0+

y = e−4, or lim
x→0+

(1− 4x)
cotx

=

e−4 = 1
e4 .

CHOICE D

4.6 Using Calculus to Graph Functions

Skill Building

1. Let f(x) = x4 − 6x2 + 10.

Step 1 The polynomial function f has a domain of all real numbers . f(0) = 10, so the

y-intercept is 10 . To find the x-intercepts, solve the equation f(x) = 0. Because

x4 − 6x2 + 10 = (x2 − 3)2 + 1,

it follows that there are no real solutions to the equation f(x) = 0, so the graph of f

has no x-intercepts .

Step 2 The graphs of polynomial functions do not have asymptotes , but the end behavior

of the graph of f will resemble the power function y = x4.

Step 3 Now

f ′(x) = 4x3 − 12x = 4x(x2 − 3); and

f ′′(x) = 12x2 − 12 = 12(x− 1)(x+ 1).

The critical numbers of the polynomial function f occur where f ′(x) = 0, so 0 and ±
√
3

are the critical numbers. At the points (−
√
3, 1), (0, 10), and (

√
3, 1), the tangent lines

are horizontal.
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Step 4 To apply the Increasing/Decreasing Function Test, use the critical numbers 0 and

±
√
3 to divide the number line into four intervals.

Interval Sign of f ′ Conclusion

(−∞,−
√
3) − f is decreasing on (−∞,−

√
3)

(−
√
3, 0) + f is increasing on (−

√
3, 0)

(0,
√
3) − f is decreasing on (0,

√
3)

(
√
3,∞) + f is increasing on (

√
3,∞)

Step 5 By the First Derivative Test and the information in the table above, f has a local
minimum value at −

√
3, a local maximum value at 0, and a local minimum value at√

3. The

local minimum values are f(−
√
3) = 1 and f(

√
3) = 1 ,

while the local maximum value is f(0) = 10 .

Step 6 The second derivative is equal to zero at x = ±1. Use these numbers to divide the
number line into three intervals, and determine the sign of f ′′ on each interval.

Interval Sign of f ′′ Conclusion

(−∞,−1) + f is concave up on (−∞,−1)
(−1, 1) − f is concave down on (−1, 1)
(1,∞) + f is concave up on (1,∞)

The concavity of f changes at ±1, so the points (−1, 5) and (1, 5) are points of

inflection of f .

Step 7 The figure below displays the graph of f . Local extreme values are highlighted by
closed circles, and points of inflection are highlighted by closed squares.
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3. Let f(x) = x5 − 10x2

Step 1 The polynomial function f has a domain of all real numbers . f(0) = 0, so the

y-intercept is 0 . To find the x-intercepts, solve the equation f(x) = 0. Because

x5 − 10x2 = x2
(

x3 − 10
)

it follows that the real solutions to the equation f(x) = 0 are x = 0 and x = 3
√
10 , so

those are the x-intercepts.
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Step 2 The graphs of polynomial functions do not have asymptotes , but the end behavior

of the graph of f will resemble the power function y = x5.

Step 3 Now

f ′(x) = 5x4 − 20x = 5x
(

x3 − 4
)

f ′′(x) = 20x3 − 20

The critical numbers of the polynomial function f occur where f ′(x) = 0, so 0 and 3
√
4 are

the critical numbers. At the points (0, 0) and
(

3
√
4, f
(

3
√
4
))

=
(

3
√
4,−12 3

√
2
)

, the tangent
lines are horizontal.

Step 4 To apply the Increasing/Decreasing Function Test, use the critical numbers 0 and
3
√
4 to divide the number line into three intervals.

Interval Sign of f ′ Conclusion

(−∞, 0) + f is increasing on (−∞, 0]
(

0, 3
√
4
)

− f is decreasing on
[

0, 3
√
4
]

(

3
√
4,∞

)

+ f is increasing on
[

3
√
4,∞

)

Step 5 By the First Derivative Test and the information in the table above, f has a local

maximum value at 0 and a local minimum value at 3
√
4 . The local maximum value is (0, 0)

and the local minimum value is
(

3
√
4,−12 3

√
2
)

.

Step 6 The second derivative is equal to zero at x = 1. Use this number to divide the
number line into two intervals, and determine the sign of f ′′(x) on each interval.

Interval Sign of f ′ Conclusion

(−∞, 1) − f is concave down on (−∞, 1)
(1,∞) + f is concave up on (1,∞)

The concavity of f changes at 1, so the point (1,−9) is a point of inflection of f .

Step 7 The figure below displays the graph of f . The local extreme values are highlighted
by closed circles and the point of inflection is highlighted by a closed square.
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5. Let f(x) = 3x5 + 5x4

Step 1 The polynomial function f has a domain of all real numbers . f(0) = 0, so the

y-intercept is 0 . To find the x-intercepts, solve the equation f(x) = 0. Because

3x5 + 5x4 = x4(3x+ 5)

it follows that the real solutions to the equation f(x) = 0 are x = 0 and x = − 5
3 , so those

are the x-intercepts.

Step 2 The graphs of polynomial functions do not have asymptotes , but the end behavior

of the graph of f will resemble the power function y = x5.

Step 3 Now

f ′(x) = 15x4 + 20x3 = 5x3(3x+ 4)

f ′′(x) = 60x3 + 60x2 = 60x2(x+ 1)

The critical numbers of the polynomial function f occur where f ′(x) = 0, so − 4
3 and 0 are

the critical numbers. At the points
(

− 4
3 ,

256
81

)

and (0, 0), the tangent lines are horizontal.

Step 4 To apply the Increasing/Decreasing Function Test, use the critical numbers 0 and
− 4

3 to divide the number line into three intervals.

Interval Sign of f ′ Conclusion
(

−∞,− 4
3

)

+ f is increasing on
(

−∞,− 4
3

]

(

0,− 4
3

)

− f is decreasing on
[

− 4
3 , 0
]

(0,∞) + f is increasing on [0,∞)

Step 5 By the First Derivative Test and the information in the table above, f has a local

maximum value at − 4
3 and a local minimum at 0 . The local maximum value is

(

− 4
3 ,

256
81

)

and the local minimum value is (0, 0) .

Step 6 The second derivative is equal to zero at x = −1 and x = 0. Use these numbers
to divide the number line into three intervals, and determine the sign of f ′′(x) on each
interval.

Interval Sign of f ′ Conclusion

(−∞,−1) − f is concave down on (−∞,−1)
(−1, 0) + f is concave up on (−1, 0)
(0,∞) + f is concave up on (0,∞)

The concavity of f changes at −1, so the point (−1, 2) is a point of inflection of f . The
concavity does not change at 0, so the point (0, 0) is not a point of inflection.

Step 7 The figure below displays the graph of f . The local extreme values are highlighted
by closed circles and the point of inflection is highlighted by a closed square.
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7. Let f(x) =
2

x2 − 4
.

Step 1 The domain of the rational function f is the set {x|x 6= ±2} . There are no x-intercepts ,

and the y-intercept is f(0) = −1

2
.

Step 2 The degree of the numerator is less than the degree of the denominator, so the graph
of f has a horizontal asymptote. Because

lim
x→±∞

2

x2 − 4
= lim

x→±∞

2

x2 − 4
·

1
x2

1
x2

= lim
x→±∞

2
x2

1− 4
x2

= 0,

the line y = 0 is a horizontal asymptote . To identify vertical asymptotes, check the

one-sided limits at those values for x that are not in the domain of f . As

lim
x→−2−

2

x2 − 4
= ∞ and lim

x→−2+

2

x2 − 4
= −∞,

and

lim
x→2−

2

x2 − 4
= −∞ and lim

x→2+

2

x2 − 4
= ∞,

the lines x = ±2 are vertical asymptotes .

Step 3 Now

f ′(x) =
d

dx
2(x2 − 4)−1 = −2(x2 − 4)−2 · 2x = − 4x

(x2 − 4)2
; and

f ′′(x) =
d

dx

[

− 4x

(x2 − 4)2

]

= − (x2 − 4)2 · 4− 4x · 2(x2 − 4)(2x)

(x2 − 4)4

= −4(x2 − 4)− 16x2

(x2 − 4)3
=

12x2 + 16

(x2 − 4)3
.

The critical numbers of f occur where f ′(x) = 0 and where f ′(x) does not exist. f ′(x)
is equal to 0 when x = 0 and does not exist when x = ±2. However, ±2 are not in

the domain of f , so ±2 are not critical numbers. Therefore, 0 is the only critical

number of f . The tangent line at the point

(

0,−1

2

)

is horizontal.

Step 4 To apply the Increasing/Decreasing Function Test, use the numbers 0 and ±2 to
divide the number line into four intervals.
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Interval Sign of f ′ Conclusion

(−∞,−2) + f is increasing on (−∞,−2)
(−2, 0) + f is increasing on (−2, 0)
(0, 2) − f is decreasing on (0, 2)
(2,∞) − f is decreasing on (2,∞)

Step 5 By the First Derivative Test and the information in the table above, f has a local

maximum value at 0. The local maximum value is f(0) = −1

2
.

Step 6 The second derivative is never equal to zero and does not exist when x = ±2. Use
these numbers to divide the number line into three intervals, and determine the sign
of f ′′ on each interval.

Interval Sign of f ′′ Conclusion

(−∞,−2) + f is concave up on (−∞,−2)
(−2, 2) − f is concave down on (−2, 2)
(2,∞) + f is concave up on (2,∞)

Although the concavity of f changes at ±2, there is no point of inflection at ±2

because ±2 are not in the domain of f .
Step 7 The figure below displays the graph of f . The local extreme value is highlighted by a

closed circle.
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9. Let f(x) =
2x− 1

x+ 1
.

Step 1 The domain of the rational function f is the set {x|x 6= −1} . The x-intercept is
1

2
,

and the y-intercept is f(0) = −1 .

Step 2 The degree of the numerator is equal to the degree of the denominator, so the graph
of f has a horizontal asymptote. Because

lim
x→±∞

2x− 1

x+ 1
= lim

x→±∞

2x− 1

x+ 1
·

1
x
1
x

= lim
x→±∞

2− 1
x

1 + 1
x

= 2,

the line y = 2 is a horizontal asymptote . To identify vertical asymptotes, check the

one-sided limits at those values for x that are not in the domain of f . As

lim
x→−1−

2x− 1

x+ 1
= ∞ and lim

x→−1+

2x− 1

x+ 1
= −∞,

the line x = −1 is a vertical asymptote .
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Step 3 Now

f ′(x) =
d

dx

(

2x− 1

x+ 1

)

=
(x+ 1) · 2− (2x− 1) · 1

(x+ 1)2
=

3

(x+ 1)2
; and

f ′′(x) =
d

dx
[3(x+ 1)−2] = −6(x+ 1)−3 = − 6

(x+ 1)3
.

The critical numbers of f occur where f ′(x) = 0 and where f ′(x) does not exist.
f ′(x) is never equal to 0 and does not exist when x = −1. However, −1 is not in the

domain of f , so −1 is not a critical number. Therefore, f has no critical numbers .

Step 4 To apply the Increasing/Decreasing Function Test, use the number −1 to divide the
number line into two intervals.

Interval Sign of f ′ Conclusion

(−∞,−1) + f is increasing on (−∞,−1)
(−1,∞) + f is increasing on (−1,∞)

Step 5 Because there are no critical numbers, f has no local extreme values .

Step 6 The second derivative is never equal to zero and does not exist when x = −1. Use
this number to divide the number line into two intervals, and determine the sign of
f ′′ on each interval.

Interval Sign of f ′′ Conclusion

(−∞,−1) + f is concave up on (−∞,−1)
(−1,∞) − f is concave down on (−1,∞)

Although the concavity of f changes at −1, there is no point of inflection at −1

because −1 is not in the domain of f .
Step 7 The figure below displays the graph of f .
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11. Let f(x) =
x

x2 + 1
.

Step 1 The domain of the rational function f is the set of all real numbers (because 1+x2 is

never equal to zero for any real x). The x-intercept is 0 , and the y-intercept is f(0) = 0 .

Step 2 The degree of the numerator is less than the degree of the denominator, so the graph
of f has a horizontal asymptote. Because

lim
x→±∞

x

x2 + 1
= lim

x→±∞

x

x2 + 1
·

1
x2

1
x2

= lim
x→±∞

1
x

1 + 1
x2

= 0,
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the line y = 0 is a horizontal asymptote . Because f is defined for all real numbers,

there are no vertical asymptotes .

Step 3 Now

f ′(x) =
d

dx

(

x

x2 + 1

)

=
(x2 + 1) · 1− x · 2x

(x2 + 1)2
=

1− x2

(x2 + 1)2
; and

f ′′(x) =
d

dx

(

1− x2

(x2 + 1)2

)

=
(x2 + 1)2 · (−2x)− (1− x2) · 2(x2 + 1)(2x)

(x2 + 1)4

=
−2x(x2 + 1)− 4x(1− x2)

(x2 + 1)3
=

2x3 − 6x

(x2 + 1)3
.

The critical numbers of f occur where f ′(x) = 0 and where f ′(x) does not exist. f ′(x)

exists everywhere and is equal to 0 when x = ±1. Therefore, ±1 are the critical

numbers of f . At the points

(

−1,−1

2

)

and

(

1,
1

2

)

, the tangent lines are horizontal.

Step 4 To apply the Increasing/Decreasing Function Test, use the critical numbers ±1 to
divide the number line into three intervals.

Interval Sign of f ′ Conclusion

(−∞,−1) − f is decreasing on (−∞,−1)
(−1, 1) + f is increasing on (−1, 1)
(1,∞) − f is decreasing on (0,∞)

Step 5 By the First Derivative Test and the information in the table above, f has a local mini-

mum value at−1 and a local maximum value at 1. The local minimum value is f(−1) = −1

2
,

and the local maximum value is f(1) =
1

2
.

Step 6 The second derivative exists everywhere and is equal to 0 when x = 0 and when
x = ±

√
3. Use these numbers to divide the number line into four intervals, and

determine the sign of f ′′ on each interval.

Interval Sign of f ′′ Conclusion

(−∞,−
√
3) − f is concave down on (−∞,−

√
3)

(−
√
3, 0) + f is concave up on (−

√
3, 0)

(0,
√
3) − f is concave down on (0,

√
3)

(
√
3,∞) + f is concave up on (

√
3,∞)

The concavity of f changes at −
√
3, 0, and

√
3, so the points

(

−
√
3,−

√
3

4

)

, (0, 0), and

(

√
3,

√
3

4

)

are points of inflection of f .

Step 7 The figure below displays the graph of f . Local extreme values are highlighted by
closed circles, and points of inflection are highlighted by closed squares.
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13. Let f(x) =
x2 + 1

2x
.

Step 1 The domain of the rational function f is the set {x|x 6= 0} . There are no x-intercepts

because x2 + 1 is never equal to zero for any real x, and there is no y-intercept be-

cause f is not defined at 0.

Step 2 The degree of the numerator is one more than the degree of the denominator, so the
graph of f has no horizontal asymptote but does have an oblique asymptote. Because

f(x) =
x2 + 1

2x
=

1

2
x+

1

2x
,

it follows that

lim
x→∞

[

f(x)− 1

2
x

]

= lim
x→∞

1

2x
= 0

so the line y =
1

2
x is an oblique asymptote . To identify vertical asymptotes, check

the one-sided limits at those values for x that are not in the domain of f . As

lim
x→0−

x2 + 1

2x
= −∞ and lim

x→0+

x2 + 1

2x
= ∞,

the line x = 0 is a vertical asymptote .

Step 3 Now

f ′(x) =
d

dx

(

x2 + 1

2x

)

=
2x · 2x− (x2 + 1) · 2

4x2
=

2x2 − 2

4x2
=

(x− 1)(x+ 1)

2x2
; and

f ′′(x) =
d

dx

[

x2 − 1

2x2

]

=
2x2 · 2x− (x2 − 1) · 4x

4x4
=

4x

4x4
=

1

x3
.

The critical numbers of f occur where f ′(x) = 0 and where f ′(x) does not exist.
f ′(x) is equal to 0 when x = ±1 and does not exist when x = 0. However, 0 is not in

the domain of f , so 0 is not a critical number. Therefore, ±1 are the only critical

numbers of f . At the points (−1,−1) and (1, 1), the tangent lines are horizontal.

Step 4 To apply the Increasing/Decreasing Function Test, use the numbers 0 and ±1 to
divide the number line into four intervals.
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Interval Sign of f ′ Conclusion

(−∞,−1) + f is increasing on (−∞,−1)
(−1, 0) − f is decreasing on (−1, 0)
(0, 1) − f is decreasing on (0, 1)
(1,∞) + f is increasing on (1,∞)

Step 5 By the First Derivative Test and the information in the table above, f has a local maxi-

mum value at−1 and a local minimum value at 1. The local maximum value is f(−1) = −1 ,

and the local minimum value is f(1) = 1 .

Step 6 The second derivative is never equal to zero and does not exist when x = 0. Use this
number to divide the number line into two intervals, and determine the sign of f ′′ on
each interval.

Interval Sign of f ′′ Conclusion

(−∞, 0) − f is concave down on (−∞, 0)
(0,∞) + f is concave up on (0,∞)

Although the concavity of f changes at 0, there is no point of inflection at 0 because

0 is not in the domain of f .

Step 7 The figure below displays the graph of f . The local extreme values are highlighted
by a closed circles.
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15. Let f(x) = x2−1
x2+2x+3

Step 1 The function f has a domain of all real numbers (the quadratic formula shows

that the denominator has no real zeros). f(0) = − 1
3 , so the y-intercept is − 1

3 . To find

the x-intercepts, solve the equation f(x) = 0. Because the denominator is always positive,

f(x) = 0 whenever the numerator is 0, that is, at x = ±1 , so those are the x-intercepts.

Step 2 The degree of the numerator is the same as the degree of the denominator, so f has
a horizontal asymptote. Because

lim
x→±∞

x2 − 1

x2 + 2x+ 3
= lim

x→±∞

x2 − 1

x2 + 2x+ 3
·

1
x2

1
x2

= lim
x→±∞

1− 1
x2

1 + 2
x + e

x2

= 1

the horizontal asymptote is y = 1 . Because the domain is all real numbers, there is

no vertical asymptote .
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Step 3 Now

f ′(x) =
2
(

x2 + 4x+ 1
)

(x2 + 2x+ 3)2

f ′′(x) = −4
(

x3 + 6x2 + 3x− 4
)

(x2 + 2x+ 3)3

The critical numbers of the polynomial function f occur where f ′(x) = 0.
2(x2+4x+1)
(x2+2x+3)2

= 0

when
(

x2 + 4x+ 1
)

= 0, since the denominator is always positive. Using the quadratic

formula, the critical points are −2±
√
3 . At the points

(

−2−
√
3, f
(

−2−
√
3
))

=
(

−2−
√
3, 1+

√
3

2

)

and
(

−2 +
√
3, f
(

−2 +
√
3
))

=
(

−2−
√
3, 1−

√
3

2

)

, the tangent lines are

horizontal.

Step 4 To apply the Increasing/Decreasing Function Test, use the critical numbers −2±
√
3

to divide the number line into three intervals.

Interval Sign of f ′ Conclusion
(

−∞,−2−
√
3
)

+ f is increasing on
(

−∞,−2−
√
3
]

(

−2−
√
3,−2 +

√
3
)

− f is decreasing on
[

−2−
√
3,−2 +

√
3
]

(

−2 +
√
3,∞

)

+ f is increasing on
[

−2 +
√
3,∞

)

Step 5 By the First Derivative Test and the information in the table above, f has a local

maximum value at −2−
√
3 and a local minimum at −2 +

√
3 . The

local maximum value is
(

−2−
√
3, 1+

√
3

2

)

and the local minimum value is
(

−2 +
√
3, 1−

√
3

2

)

.

Step 6 The second derivative is equal to zero when x3 + 6x2 + 3x − 4 = 0, since the
denominator is always positive. Using technology, this happens when x ≈ −5.290, −1.294,
or 0.584. Use these numbers to divide the number line into three intervals, and determine
the sign of f ′′(x) on each interval.

Interval Sign of f ′ Conclusion

(−∞,−5.290) + f is concave up on (−∞,−5.290]
(−5.290,−1.294) − f is concave down on [−5.290,−1.294]
(−1.294, 0.584) + f is concave up on [−1.294, 0.584]

(0.584,∞) − f is concave down on [0.584,∞)

The concavity of f changes at each of these points, so each point is a point of inflection
of f .

Step 7 The figure below displays the graph of f . The local extreme values are highlighted
by closed circles and the point of inflection is highlighted by a closed square.
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17. Let f(x) =
x(x3+1)

(x2−4)(x+1)

Step 1 The function f has a domain of {x |x 6= −1, x 6= ±2} . Next, f(0) = 0, so the

y-intercept is 0 . To find the xintercepts, solve the equation f(x) = 0. This happens

when the numerator equals 0 and the denominator does not equal 0. The numerator
equals 0 only for x = 0, and the denominator does not equal 0 there. Therefore, the only

x-intercept is x = 0 .

Step 2 The degree of the numerator is one more than the degree of the denominator, so the
graph of f has no horizontal asymptote but it does have an oblique asymptote. If x 6= 1,
then

f(x) =
x
(

x3 + 1
)

(x2 − 4)(x+ 1)
=
x(x+ 1)

(

x2 − x+ 1
)

(x2 − 4)(x+ 1)
=
x
(

x2 − x+ 1
)

x2 − 4
=
x3 − x2 + x

x2 − 4

= x− 1 +
5x− 4

x2 − 4

which behaves at the endpoints like y = x − 1, so the oblique asymptote is y = x− 1 .

Also,

lim
x→−2−

f(x) = lim
x→−2−

(

x− 1 +
5x− 4

x2 − 4

)

= x− 1 + lim
x→−2−

5x− 4

x2 − 4
= −∞

and lim
x→−2+

f(x) = lim
x→−2+

(

x− 1 +
5x− 4

x2 − 4

)

= x− 1 + lim
x→−2+

5x− 4

x2 − 4
= +∞

so x = −2 is a vertical asymptote ; and

lim
x→2−

f(x) = lim
x→2−

(

x− 1 +
5x− 4

x2 − 4

)

= x− 1 + lim
x→2−

5x− 4

x2 − 4
= −∞

and lim
x→2+

f(x) = lim
x→2+

(

x− 1 +
5x− 4

x2 − 4

)

= x− 1 + lim
x→2+

5x− 4

x2 − 4
== ∞

so x = 2 is a vertical asymptote ; but

lim
x→−1

f(x) = lim
x→−1

(

x− 1 +
5x− 4

x2 − 4

)

= (−1)− 1 +
5(−1)− 4

(1)
2 − 4

= −2 +
−9

−3
= 1

so

(

1, lim
x→−1

f(x)

)

= (−1, 1) is a hole .
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Step 3 Now

f ′(x) =
x4 − 13x2 + 8x− 4

(x2 − 4)
2

f ′′(x) = −2
(

5x3 − 12x2 + 60x− 16
)

(x2 − 4)
3

The critical numbers of the polynomial function f occur where f ′(x) = 0, that is, when
x4−13x2+8x−4

(x2−4)2
= 0. This happens when the numerator equals zero and the denominator

does not equal 0. Using technology, the numerator equals 0 when x ≈ −3.912 or 3.309

(the denominator does not equal 0 there), so these are the critical points. At the points ≈
(−3.912,−6.700) and ≈ (3.309, 4.114), the tangent lines are horizontal. The other critical

points are where f ′(x) is not defined, namely at x = ±2 or −1 .

Step 4 To apply the Increasing/Decreasing Function Test, use the critical numbers−3.912,−2,
−1 , 2, and 3.309 to divide the number line into five intervals.

Interval Sign of f ′ Conclusion

(−∞,−3.912) + f is increasing on (−∞,−3.912]
(−3.912,−2) − f is decreasing on [−3.912,−2)
(−2,−1) − f is decreasing on (−2,−1)
(−1, 2) − f is decreasing on (−1, 2)

(2, 3.309) − f is decreasing on (2, 3.309]
(3.309,∞) + f is increasing on [3.309,∞)

Step 5 By the First Derivative Test and the information in the table above, f has a local

maximum value at −3.912 and a local minimum at 3.309 . The

local maximum value is (−3.912,−6.700) and the local minimum value is (3.309, 4.114) .

Step 6 The second derivative is equal to zero when the numerator of f ′′(x) equals 0 and
the denominator does not equal 0. Using technology, this happens when x ≈ 0.281. Use
this number and the numbers where f ′′(x) is not defined, that is, x = ±2 or −1, to divide
the number line into five intervals, and determine the sign of f ′′(x) on each interval.

Interval Sign of f ′ Conclusion

(−∞,−2) − f is concave down on (−∞,−2)
(−2, 0.281) + f is concave up on (−2, 0.281]
(0.281,−1) − f is concave down on = [0.281,−1)
(−1, 2) − f is concave down on (−1, 2)
(2,∞) + f is concave up on (2,∞)

The only point where f is continuous and the concavity of f changes is at 0.281, so

(0.281, f(0.281)) = (0.281,−0.057) is the inflection point .

Step 7 The figure below displays the graph of f .



366 Chapter 4 Applications of the Derivative

19. Let f(x) = 1 +
1

x
+

1

x2
=
x2 + x+ 1

x2
.

Step 1 The domain of the rational function f is the set {x|x 6= 0} . There are no x-intercepts

because x2 + x + 1 =

(

x+
1

2

)2

+
3

4
is never equal to zero for any real x, and there

is no y-intercept because f is not defined at 0.

Step 2 The degree of the numerator is equal to the degree of the denominator, so the graph
of f has a horizontal asymptote. Because

lim
x→±∞

(

1 +
1

x
+

1

x2

)

= 1,

the line y = 1 is a horizontal asymptote . To identify vertical asymptotes, check the

one-sided limits at those values for x that are not in the domain of f . As

lim
x→0−

x2 + x+ 1

x2
= ∞ and lim

x→0+

x2 + x+ 1

x2
= ∞,

the line x = 0 is a vertical asymptote .

Step 3 Now

f ′(x) =
d

dx

(

1 +
1

x
+

1

x2

)

= − 1

x2
− 2

x3
= −x+ 2

x3
; and

f ′′(x) =
d

dx

(

− 1

x2
− 2

x3

)

=
2

x3
+

6

x4
=

2x+ 6

x4
.

The critical numbers of f occur where f ′(x) = 0 and where f ′(x) does not exist. f ′(x)
is equal to 0 when x = −2 and does not exist when x = 0. However, 0 is not in the

domain of f , so 0 is not a critical number. Therefore, −2 is the only critical number

of f . At the point

(

−2,
3

4

)

, the tangent line is horizontal.

Step 4 To apply the Increasing/Decreasing Function Test, use the numbers −2 and 0 to
divide the number line into three intervals.

Interval Sign of f ′ Conclusion

(−∞,−2) − f is decreasing on (−∞,−2)
(−2, 0) + f is increasing on (−2, 0)
(0,∞) − f is decreasing on (0,∞)
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Step 5 By the First Derivative Test and the information in the table above, f has a local

minimum value at −2. The local minimum value is f(−2) =
3

4
.

Step 6 The second derivative is equal to zero when x = −3 and does not exist when x = 0.
Use these numbers to divide the number line into three intervals, and determine the
sign of f ′′ on each interval.

Interval Sign of f ′′ Conclusion

(−∞,−3) − f is concave down on (−∞,−3)
(−3, 0) + f is concave up on (−3, 0)
(0,∞) + f is concave up on (0,∞)

The concavity of f changes at −3 so the point

(

−3,
7

9

)

is a point of inflection of f .

Step 7 The figure below displays the graph of f . The local extreme value is highlighted by a
closed circle, and the point of inflection is highlighted by a closed square.
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21. Let f(x) =
√
3− x.

Step 1 The domain of f is given by the solution to the inequality 3− x ≥ 0; that is, the set

{x|x ≤ 3} . The x-intercept is 3 , and the y-intercept is f(0) =
√
3 .

Step 2 Because
lim

x→−∞

√
3− x = ∞,

the graph of f does not have a horizontal asymptote . The graph also has no vertical asymptotes .

Step 3 Now,

f ′(x) = −1

2
(3− x)−1/2 = − 1

2
√
3− x

; and

f ′′(x) = −1

4
(3− x)−3/2 = − 1

4
√

(3− x)3
.

The critical numbers of f occur where f ′(x) = 0 and where f ′(x) does not exist. f ′(x)

is never equal to 0 and does not exist when x = 3. Therefore, 3 is the only critical
number of f . At the point (3, 0), the tangent line is vertical.

Step 4 Because f ′(x) < 0 for all x < 3, f is decreasing on the interval (−∞, 3) .
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Step 5 Because the only critical number of f is an endpoint of the domain of f , f has

no local extreme values .

Step 6 Because f ′′(x) < 0 for all x < 3, f is concave down on the interval (−∞, 3) . As the

concavity of f never changes, f has no points of inflection .

Step 7 The figure below displays the graph of f .
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23. Let f(x) = x+
√
x.

Step 1 The domain of f is the set {x|x ≥ 0} . The x-intercept is 0 , and the y-intercept is f(0) = 0 .

Step 2 Because
lim
x→∞

(x+
√
x) = ∞,

the graph of f does not have a horizontal asymptote . The graph also has no vertical asymptotes .

Step 3 Now,

f ′(x) = 1 +
1

2
√
x
; and

f ′′(x) = − 1

4x3/2
.

The critical numbers of f occur where f ′(x) = 0 and where f ′(x) does not exist. f ′(x)

is never equal to 0 and does not exist when x = 0. Therefore, 0 is the only critical
number of f . At the point (0, 0), the tangent line is vertical.

Step 4 Because f ′(x) > 1 > 0 for all x > 0, f is increasing on the interval (0,∞) .

Step 5 Because the only critical number of f is an endpoint of the domain of f , f has

no local extreme values .

Step 6 Because f ′′(x) < 0 for all x > 0, f is concave down on the interval (0,∞) . As the

concavity of f never changes, f has no points of inflection .
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Step 7 The figure below displays the graph of f .
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25. Let f(x) =
x2√
x+ 1

.

Step 1 The domain of f is given by the solution to the inequality x+ 1 > 0; that is, the set

{x|x > −1} . The x-intercept is 0 , and the y-intercept is f(0) = 0 .

Step 2 Because

lim
x→∞

x2√
x+ 1

= ∞,

the graph of f does not have a horizontal asymptote . On the other hand,

lim
x→−1+

x2√
x+ 1

= ∞,

so the line x = −1 is a vertical asymptote .

Step 3 Now,

f ′(x) =
d

dx

(

x2√
x+ 1

)

=

√
x+ 1 · 2x− x2 · 1

2 (x+ 1)−1/2

x+ 1

=
4x(x+ 1)− x2

2(x+ 1)3/2
=

3x2 + 4x

2(x+ 1)3/2
; and

f ′′(x) =
d

dx

(

3x2 + 4x

2(x+ 1)3/2

)

=
2(x+ 1)3/2 · (6x+ 4)− (3x2 + 4x) · 3(x+ 1)1/2

4(x+ 1)3

=
2(x+ 1)(6x+ 4)− 3(3x2 + 4x)

4(x+ 1)5/2
=

3x2 + 8x+ 8

4(x+ 1)5/2
.

The critical numbers of f occur where f ′(x) = 0 and where f ′(x) does not exist. f ′(x)

is equal to 0 when x = 0 and when x = −4

3
and does not exist when x = −1. As

−4

3
and −1 are not in the domain of f , −4

3
and −1 are not critical numbers of f .

Therefore, 0 is the only critical number of f . At the point (0, 0), the tangent line is
horizontal.

Step 4 To apply the Increasing/Decreasing Function Test, use the number 0 to divide (−1,∞)
into two intervals.
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Interval Sign of f ′ Conclusion

(−1, 0) − f is decreasing on (−1, 0)
(0,∞) + f is increasing on (0,∞)

Step 5 By the First Derivative Test and the information in the table above, f has a local

minimum value at 0. The local minimum value is f(0) = 0 .

Step 6 Because f ′′(x) > 0 for all x > −1, f is concave up on the interval (−1,∞) . As the

concavity of f never changes, f has no points of inflection .

Step 7 The figure below displays the graph of f . The local extreme value is highlighted by a
closed circle.
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27. Let f(x) =
1

(x + 1)(x− 2)
=

1

x2 − x− 2
.

Step 1 The domain of the rational function f is the set {x|x 6= −1, x 6= 2} . There are

no x-intercepts , and the y-intercept is f(0) = −1

2
.

Step 2 The degree of the numerator is less than the degree of the denominator, so the graph
of f has a horizontal asymptote. Because

lim
x→±∞

1

x2 − x− 2
= lim

x→±∞

1

x2 − x− 2
·

1
x2

1
x2

= lim
x→±∞

1
x2

1− 1
x − 2

x2

= 0,

the line y = 0 is a horizontal asymptote . To identify vertical asymptotes, check the

one-sided limits at those values for x that are not in the domain of f . As

lim
x→−1−

1

(x+ 1)(x− 2)
= ∞ and lim

x→−1+

1

(x+ 1)(x− 2)
= −∞,

and

lim
x→2−

1

(x+ 1)(x− 2)
= −∞ and lim

x→2+

1

(x + 1)(x− 2)
= ∞,

the lines x = −1 and x = 2 are vertical asymptotes .
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Step 3 Now,

f ′(x) =
d

dx

(

1

x2 − x− 2

)

= − 2x− 1

(x2 − x− 2)2
; and

f ′′(x) = − d

dx

(

2x− 1

(x2 − x− 2)2

)

= − (x2 − x− 2)2 · 2− (2x− 1) · 2(x2 − x− 2)(2x− 1)

(x2 − x− 2)4

= −2(x2 − x− 2)− 2(4x2 − 4x+ 1)

(x2 − x− 2)3
=

6(x2 − x+ 1)

(x2 − x− 2)3
.

The critical numbers of f occur where f ′(x) = 0 and where f ′(x) does not exist. f ′(x)

is equal to 0 when x =
1

2
and does not exist when x = −1 and when x = 2. As −1

and 2 are not in the domain of f , −1 and 2 are not critical numbers. Therefore,
1

2
is

the only critical number of f . At the point

(

1

2
,−4

9

)

, the tangent line is horizontal.

Step 4 To apply the Increasing/Decreasing Function Test, use the numbers −1,
1

2
, and 2 to

divide the number line into four intervals.

Interval Sign of f ′ Conclusion

(−∞,−1) + f is increasing on (−∞,−1)
(−1, 12 ) + f is increasing on (−1, 12 )
(12 , 2) − f is decreasing on (12 , 2)
(2,∞) − f is decreasing on (2,∞)

Step 5 By the First Derivative Test and the information in the table above, f has a local

maximum value at
1

2
. The local maximum value is f

(

1

2

)

= −4

9
.

Step 6 The second derivative is never equal to zero and does not exist for x = −1 and x = 2.
Use these numbers to divide the number line into three intervals, and determine the
sign of f ′′ on each interval.

Interval Sign of f ′′ Conclusion

(−∞,−1) + f is concave up on (−∞,−1)
(−1, 2) − f is concave down on (−1, 2)
(2,∞) + f is concave up on (2,∞)

Although the concavity of f changes at −1 and 2, there is no point of inflection at

either −1 or 2 because −1 and 2 are not in the domain of f .

Step 7 The figure below displays the graph of f . The local extreme value is highlighted by a
closed circle.
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29. Let f(x) = x2/3 + 3x1/3 + 2.

Step 1 The domain of f is the set of all real numbers . Solving

x2/3 + 3x1/3 + 2 = (x1/3 + 2)(x1/3 + 1) = 0,

yields −8 and −1 as the x-intercepts ; the y-intercept is f(0) = 2 .

Step 2 Because

lim
x→±∞

(x2/3 + 3x1/3 + 2) = lim
x→±∞

[

x2/3
(

1 +
3

x1/3
+

2

x2/3

)]

= ∞,

the graph of f does not have a horizontal asymptote . The graph also has no vertical asymptotes

because f is defined for all x.

Step 3 Now,

f ′(x) =
2

3
x−1/3 + x−2/3 =

2x1/3 + 3

3x2/3
; and

f ′′(x) = −2

9
x−4/3 − 2

3
x−5/3 = −2x1/3 + 6

9x5/3
.

The critical numbers of f occur where f ′(x) = 0 and where f ′(x) does not exist. f ′(x)

is equal to 0 when x = −27

8
and does not exist when x = 0. Therefore, −27

8
and 0

are critical numbers of f . At the point

(

−27

8
,−1

4

)

, the tangent line is horizontal; at

the point (0, 2), the tangent line is vertical.

Step 4 To apply the Increasing/Decreasing Function Test, use the numbers −27

8
and 0 to

divide the number line into three intervals.

Interval Sign of f ′ Conclusion

(−∞,− 27
8 ) − f is decreasing on (−∞,− 27

8 )
(− 27

8 , 0) + f is increasing on (− 27
8 , 0)

(0,∞) + f is increasing on (0,∞)
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Step 5 By the First Derivative Test and the information in the table above, f has a local

minimum value at −27

8
and has neither a local maximum value nor a local minimum

value at 0. The local minimum value is f

(

−27

8

)

= −1

4
.

Step 6 The second derivative is equal to zero when x = −27 and does not exist when x = 0.
Use these numbers to divide the number line into three intervals, and determine the
sign of f ′′ on each interval.

Interval Sign of f ′′ Conclusion

(−∞,−27) − f is concave down on (−∞,−27)
(−27, 0) + f is concave up on (−27, 0)
(0,∞) − f is concave down on (0,∞)

The concavity of f changes at −27 and 0, so the points (−27, 2) and (0, 2) are points

of inflection of f .

Step 7 The figure below displays the graph of f . The local extreme value is highlighted by a
closed circle, and the points of inflection are highlighted by closed squares.
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31. Let f(x) = sinx− cosx. Note the function f is periodic with period 2π.

Step 1 The domain of f is the set of all real numbers . The x-intercepts satisfy the equation

sinx− cosx = 0 or tanx = 1;

the solutions to this equation are
π

4
+ kπ for any integer k. The y-intercept is f(0) = −1 .

Step 2 The function f has no asymptotes .

Step 3 Now,

f ′(x) = cosx+ sinx; and

f ′′(x) = − sinx+ cosx.

The critical numbers of f occur where f ′(x) = 0, which is where cosx = − sinx or

tanx = −1. Therefore, the critical numbers of f are
3π

4
+ kπ for any integer k. At

the points

(

3π

4
+ kπ, (−1)k

√
2

)

, the tangent lines are horizontal.
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Step 4 To apply the Increasing/Decreasing Function Test, consider the intervals

(

−π
4
,
3π

4

)

and

(

3π

4
,
7π

4

)

. The increasing/decreasing pattern on these two intervals will repeat

indefinitely in either direction in increments of the period 2π. The results are shown
in the table below.

Interval Sign of f ′ Conclusion

(−π
4 ,

3π
4 ) + f is increasing on (−π

4 ,
3π
4 )

(3π4 ,
7π
4 ) − f is decreasing on (3π4 ,

7π
4 )

Therefore, f is

increasing on intervals of the form

(

−π
4
+ 2kπ,

3π

4
+ 2kπ

)

and is

decreasing on intervals of the form

(

3π

4
+ 2kπ,

7π

4
+ 2kπ

)

for any integer k.

Step 5 By the First Derivative Test and the information above, f has a local maximum value

at
3π

4
+ 2kπ and a local minimum value at

7π

4
+ 2kπ for any integer k. The

local maximum value is f

(

3π

4
+ 2kπ

)

=
√
2 ,

and the

local minimum value is f

(

7π

4
+ 2kπ

)

= −
√
2 .

Step 6 The second derivative exists everywhere and is equal to zero when tanx = 1, which is

when x =
π

4
+ kπ for any integer k. Consider the intervals

(

−3π

4
,
π

4

)

and

(

π

4
,
5π

4

)

,

and determine the sign of f ′′ on each interval.

Interval Sign of f ′′ Conclusion

(− 3π
4 ,

π
4 ) + f is concave up on (− 3π

4 ,
π
4 )

(π4 ,
5π
4 ) − f is concave down on (π4 ,

5π
4 )

Taking into account the period of the function f , it follows that f is

concave up on intervals of the form

(

−3π

4
+ 2kπ,

π

4
+ 2kπ

)

and is

concave down on intervals of the form

(

π

4
+ 2kπ,

5π

4
+ 2kπ

)

for any integer k. The concavity of f changes at
π

4
+ kπ for each integer k, so

(π

4
+ kπ, 0

)

is a point of inflection for each integer k.
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Step 7 The figure below displays the graph of f over the interval [0, 2π]. The local extreme
values are highlighted by closed circles, and the points of inflection are highlighted by
closed squares. The graph repeats indefinitely in either direction with period 2π.

1 2 3 4 5 6

-1.5

-1

-0.5

0.5

1

1.5

( /4, 0) (5 /4, 0)

(3 /4, 2)

(7 /4, – 2)

(0, –1)

33. Let f(x) = sin2 x− cosx. Note the function f is periodic with period 2π.

Step 1 The domain of f is the set of all real numbers . The x-intercepts satisfy the equation

sin2 x− cosx = 1− cos2 x− cosx = 0.

This equation is quadratic in form, so by the quadratic formula,

cosx =
1±

√

(−1)2 − 4(−1)(1)

−2
=

−1±
√
5

2
.

Now,
−1−

√
5

2
< −1 and −1 ≤ cosx ≤ 1, so the x-intercepts are

cos−1

(

−1 +
√
5

2

)

+ 2kπ ≈ 0.905 + 2kπ and 2π − cos−1

(

−1 +
√
5

2

)

+ 2kπ ≈ 5.379 + 2kπ

for any integer k. The y-intercept is f(0) = −1 .

Step 2 The graph of the function f has no asymptotes .

Step 3 Now,

f ′(x) = 2 sinx cosx+ sinx = sinx(2 cosx+ 1); and

f ′′(x) = −2 sin2 x+ cosx(2 cosx+ 1) = 2 cos2 x− 2 sin2 x+ cosx

= 4 cos2 x+ cosx− 2.

As f is differentiable everywhere, the critical numbers of f occur where f ′(x) = 0; that

is, where sinx = 0 and 2 cosx+1 = 0. Therefore, kπ,
2π

3
+ 2kπ, and

4π

3
+ 2kπ are

the critical numbers of f for any integer k. At the points (kπ, (−1)k+1),

(

2π

3
+ 2kπ,

5

4

)

,

and

(

4π

3
+ 2kπ,

5

4

)

, the tangent lines are horizontal.
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Step 4 To apply the Increasing/Decreasing Function Test, consider the intervals

(

0,
2π

3

)

,
(

2π

3
, π

)

,

(

π,
4π

3

)

, and

(

4π

3
, 2π

)

. The increasing/decreasing pattern on these two

intervals will repeat indefinitely in either direction in increments of the period 2π.
The results are shown in the table below.

Interval Sign of f ′ Conclusion

(0, 2π3 ) + f is increasing on (0, 2π3 )
(2π3 , π) − f is decreasing on (2π3 , π)
(π, 4π3 ) + f is increasing on (π, 4π3 )
(4π3 , 2π) − f is decreasing on (4π3 , 2π)

Therefore, f is

increasing on intervals of the form

(

2kπ,
2π

3
+ 2kπ

)

and

(

(2k + 1)π,
4π

3
+ 2kπ

)

and is

decreasing on intervals of the form

(

2π

3
+ 2kπ, (2k + 1)π

)

and

(

4π

3
+ 2kπ, (2k + 2)π

)

for any integer k.

Step 5 By the First Derivative Test and the information above, f has a local maximum value

at
2π

3
+ 2kπ and at

4π

3
+ 2kπ and a local minimum value at kπ for each integer k.

The

local maximum values are f

(

2π

3
+ 2kπ

)

=
5

4
and f

(

4π

3
+ 2kπ

)

=
5

4
,

and the local minimum values are f(kπ) = (−1)k .

Step 6 The second derivative exists everywhere and is equal to zero when 4 cos2 x+cos x−2 =
0. This equation is quadratic in form, so by the quadratic formula,

cosx =
−1±

√

12 − 4(4)(−2)

8
=

−1±
√
33

8
.

Therefore, f ′′(x) = 0 when

x = cos−1

(

−1−
√
33

8

)

+2kπ ≈ 2.574+2kπ, x = 2π−cos−1

(

−1−
√
33

8

)

+2kπ ≈ 3.709+2kπ,

x = cos−1

(

−1 +
√
33

8

)

+2kπ ≈ 0.936+2kπ, x = 2π−cos−1

(

−1 +
√
33

8

)

+2kπ ≈ 5.347+2kπ.

Consider the approximate intervals (0.936, 2.574), (2.574, 3.709), (3.709, 5.347), and
(5, 347, 7.219), and determine the sign of f ′′ on each interval.

Interval Sign of f ′′ Conclusion

(0.936, 2.574) − f is concave down on (0.936, 2.574)
(2.574, 3.709) + f is concave up on (2.574, 3.709)
(3.709, 5.347) − f is concave down on (3.709, 5.347)
(5.347, 7.219) + f is concave up on (5.347, 7.219)



4.6 Using Calculus to Graph Functions 377

Taking into account the period of the function f , it follows that f is

concave down on intervals of the form (0.936 + 2kπ, 2.574 + 2kπ) and

(3.709 + 2kπ, 5.347 + 2kπ)

and is

concave up on intervals of the form (2.574 + 2kπ, 3.709 + 2kπ) and

(5.347 + 2kπ, 7.219 + 2kπ)

for any integer k. The concavity of f changes at 0.936+2kπ, 2.574+2kπ, 3.709+2kπ,
and 5.347 + 2kπ for each integer k, so the points

(0.936 + 2kπ, 0.055), (2.574 + 2kπ, 1.132), (3.709 + 2kπ, 1.132), and (5.347 + 2kπ, 0.055)

are points of inflection of f for each integer k.

Step 7 The figure below displays the graph of f over the interval [0, 2π]. The local extreme
values are highlighted by closed circles, and the points of inflection are highlighted by
closed squares. The graph repeats indefinitely in either direction with period 2π.
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( . 1)

(2 /3, 5/4) (4 /3, 5/4)

(0.936, 0.055) (5.347, 0.055)

(2.574, 1.132) (3.709, 1.132)

35. Let y = f(x) = lnx− x.

Step 1 The domain of f is the set {x|x > 0} . There are no x-intercepts as the graphs

of y = lnx and y = x never intersect, and there is also no y-intercept because the

function is not defined at 0.

Step 2 Because
lim
x→∞

lnx = ∞ and lim
x→∞

x = ∞,

the expression lnx− x is an indeterminate form at ∞ of the type ∞−∞. Rewrite

lnx− x as x

(

lnx

x
− 1

)

.

Now, the expression
lnx

x
is an indeterminate form at ∞ of the type

∞
∞ ; by L’Hôpital’s

Rule,

lim
x→∞

lnx

x
= lim

x→∞

d
dx lnx

d
dxx

= lim
x→∞

1
x

1
= 0.
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Therefore,

lim
x→∞

(

lnx

x
− 1

)

= −1 and lim
x→∞

(lnx− x) = lim
x→∞

[

x

(

lnx

x
− 1

)]

= −∞,

so the graph of f has no horizontal asymptote . On the other hand,

lim
x→0+

(ln x− x) = −∞,

so the line x = 0 is a vertical asymptote .

Step 3 Now,

f ′(x) =
1

x
− 1 =

1− x

x
; and

f ′′(x) = − 1

x2
.

The critical numbers of f occur where f ′(x) = 0 and where f ′(x) does not exist.
f ′(x) is equal to zero when x = 1 and does not exist when x = 0; however, 0 is not a

critical number because 0 is not in the domain of f . Therefore, 1 is the only critical
number. At the point (1,−1), the tangent line is horizontal.

Step 4 To apply the Increasing/Decreasing Function Test, use the number 1 to divide (0,∞)
into two intervals.

Interval Sign of f ′ Conclusion

(0, 1) + f is increasing on (0, 1)
(1,∞) − f is decreasing on (1,∞)

Step 5 By the First Derivative Test and the information in the table above, f has a local

maximum value at 1. The local maximum value is f(1) = −1 .

Step 6 Because f ′′(x) < 0 for all x > 0, f is concave down on the interval (0,∞) , so f has

no points of inflection .

Step 7 The figure below displays the graph of f . The local extreme value is highlighted by a
closed circle.

1 2 3 4 5

-5

-4

-3

-2

-1

(1, –1)
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37. Let f(x) = ln(4 − x2).

Step 1 The domain of f is given by the solution to the inequality 4− x2 > 0; that is, the set

{x| − 2 < x < 2} . The x-intercepts are ±
√
3 , and the y-intercept is f(0) = ln 4 .

Step 2 Because f is not defined as x becomes unbounded in either direction, the graph of f
has
no horizontal asymptote . As x approaches the endpoints of the domain

lim
x→−2+

ln(4− x2) = −∞ and lim
x→2−

ln(4− x2) = −∞,

so the lines x = ±2 are vertical asymptotes .

Step 3 Now,

f ′(x) =
1

4− x2
· (−2x) = − 2x

4− x2
; and

f ′′(x) =
d

dx

(

− 2x

4− x2

)

= − (4− x2) · 2− 2x · (−2x)

(4− x2)2
= − 8 + 2x2

(4− x2)2
.

The critical numbers of f occur where f ′(x) = 0 and where f ′(x) does not exist. f ′(x)

is equal to zero when x = 0 and exists everywhere on the domain of f . Therefore, 0
is the only critical number. At the point (0, ln 4), the tangent line is horizontal.

Step 4 To apply the Increasing/Decreasing Function Test, use the number 0 to divide (−2, 2)
into two intervals.

Interval Sign of f ′ Conclusion

(−2, 0) + f is increasing on (−2, 0)
(0, 2) − f is decreasing on (0, 2)

Step 5 By the First Derivative Test and the information in the table above, f has a local

maximum value at 0. The local maximum value is f(0) = ln 4 .

Step 6 Because f ′′(x) < 0 for all −2 < x < 2, f is concave down on the interval (−2, 2) , so

f has no points of inflection .

Step 7 The figure below displays the graph of f . The local extreme value is highlighted by a
closed circle.
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0.5
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1.5
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(– 3, 0) ( 3, 0)

(0, ln 4)
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39. Let f(x) = 3e3x(5− x).

Step 1 The domain of f is the set of all real numbers . The x-intercept is 5 , and the

y-intercept is f(0) = 15 .

Step 2 Because the domain of f is the set of all real numbers, the graph of f has no vertical asymptotes .

To determine if there is a horizontal asymptote, consider the limits at infinity:

lim
x→−∞

[3e3x(5− x)] = lim
x→−∞

3(5− x)

e−3x
= lim

x→−∞

−3

−3e−3x
= 0

and
lim
x→∞

[3e3x(5 − x)] = −∞,

where L’Hôpital’s Rule was used in the first limit. Therefore, the graph of f has the

line y = 0 as a horizontal asymptote as x → −∞ and no horizontal asymptote as
x→ ∞.

Step 3 Now,

f ′(x) = −3e3x + 9e3x(5− x) = 3e3x(14− 3x); and

f ′′(x) = −9e3x + 9e3x(14− 3x) = 9e3x(13− 3x).

The function f is differentiable everywhere, so the critical numbers of f occur where

f ′(x) = 0, which is when x =
14

3
. At the point

(

14

3
, e14

)

, the tangent line is

horizontal.

Step 4 To apply the Increasing/Decreasing Function Test, use the number
14

3
to divide the

number line into two intervals.

Interval Sign of f ′ Conclusion

(−∞, 143 ) + f is increasing on (−∞, 143 )
(143 ,∞) − f is decreasing on (143 ,∞)

Step 5 By the First Derivative Test and the information in the table above, f has a local

maximum value at
14

3
. The local maximum value is f

(

14

3

)

= e14 .

Step 6 The second derivative exists everywhere and is equal to zero when x =
13

3
. Use this

number to divide the number line into two intervals, and determine the sign of f ′′ on
each interval.

Interval Sign of f ′′ Conclusion

(−∞, 133 ) + f is concave up on (−∞, 133 )
(133 ,∞) − f is concave down on (133 ,∞)

The concavity of f changes at
13

3
, so the point

(

13

3
, 2e13

)

is a point of inflection

of f .

Step 7 The figure below displays the graph of f . The local extreme value is highlighted by a
closed circle, and the point of inflection is highlighted by a closed square.
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41. Let f(x) = e−x2

.

Step 1 The domain of f is the set of all real numbers . There is no x-intercept , and the

y-intercept is f(0) = 1 .

Step 2 Because

lim
x→±∞

e−x2

= 0,

the line y = 0 is a horizontal asymptote . The graph of f has no vertical asymptotes

because f is defined for all real x.

Step 3 Now,

f ′(x) = −2xe−x2

; and

f ′′(x) = 4x2e−x2 − 2e−x2

= 2(2x2 − 1)e−x2

.

The function f is differentiable everywhere, so the critical numbers of f occur where

f ′(x) = 0, which is when x = 0 . At the point (0, 1), the tangent line is horizontal.

Step 4 To apply the Increasing/Decreasing Function Test, use the number 0 to divide the
number line into two intervals.

Interval Sign of f ′ Conclusion

(−∞, 0) + f is increasing on (−∞, 0)
(0,∞) − f is decreasing on (0,∞)

Step 5 By the First Derivative Test and the information in the table above, f has a local

maximum value at 0. The local maximum value is f(0) = 1 .

Step 6 The second derivative exists everywhere and is equal to zero when x = ±
√
2

2
. Use

these numbers to divide the number line into three intervals, and determine the sign
of f ′′ on each interval.

Interval Sign of f ′′ Conclusion

(−∞,−
√
2
2 ) + f is concave up on (−∞,−

√
2
2 )

(−
√
2
2 ,

√
2
2 ) − f is concave down on (−

√
2
2 ,

√
2
2 )

(
√
2
2 ,∞) + f is concave up on (

√
2
2 ,∞)
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The concavity of f changes at±
√
2

2
, so the points

(

−
√
2

2
, e−1/2

)

and

(√
2

2
, e−1/2

)

are points of inflection of f .

Step 7 The figure below displays the graph of f . The local extreme value is highlighted by a
closed circle, and the points of inflection are highlighted by closed squares.
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Applications and Extensions

43. Let f(x) =
x2/3

x− 1
.

(a) The figures below display the graph of f . In the top figure, the graph is shown for
−20 ≤ x ≤ 10. In the figure at the bottom left, attention is focused on −10 ≤ x ≤ 0.
Attention is focused on 0 ≤ x ≤ 0.5 in the figure at the bottom right.
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(b) The graph of f appears to have a vertical asymptote at x = 1 and a horizontal asymptote at y = 0 .

(c) The function appears to be

decreasing on the intervals (−∞,−2), (0, 1), and (1,∞)

and increasing on the interval (−2, 0) . Additionally, the function appears to be

concave down, approximately, on the intervals (−∞,−4) and (0.1, 1)

and

concave up, approximately, on the intervals (−4, 0), (0, 0.1), and (1,∞) .

(d) The function appears to have a local minimum value at −2 and a local maximum value at 0 .

(e) Note that

f ′(x) =
(x− 1) · 2

3x
−1/3 − x2/3

(x − 1)2
=

2x− 2− 3x

3x1/3(x− 1)2
= − x+ 2

3x1/3(x− 1)2
.

The critical numbers of f occur where f ′(x) = 0 and where f ′(x) does not exist.
f ′(x) = 0 when x = −2 and does not exist when x = 0 and when x = 1; however,
1 is not in the domain of f , so 1 is not a critical number. To apply the Increas-
ing/Decreasing Function Test, use the numbers −2, 0, and 1 to divide the number
line into four intervals.

Interval Sign of f ′ Conclusion

(−∞,−2) − f is decreasing on (−∞,−2)
(−2, 0) + f is increasing on (−2, 0)
(0, 1) − f is decreasing on (0, 1)
(1,∞) − f is decreasing on (1,∞)

By the First Derivative Test and the information in the table above, f has a

local minimum value at −2 and a local maximum value at 0 , in agreement with

the approximations given in part (d).

(f) Concavity appears to change at approximately x = −4 and x = 0.1; therefore,

(−4, f(−4)) =

(

−4,−2 3
√
2

5

)

and (0.1, f(0.1)) ≈ (0.1,−0.239)

are approximate points of inflection of f .

45. Let f(x) = x+ sin(2x).

(a) The figure below displays the graph of f . Though the function f is not periodic,
observe that the graph consists of one basic shape that is repeated every π units
along the x-axis.
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(b) The graph of f does not appear to have any asymptotes .

(c) The function appears to be increasing on the interval (−1, 1) ≈
(

−π
3
,
π

3

)

and decreas-

ing on the interval (1, 2) ≈
(

π

3
,
2π

3

)

. Given the repetitive structure of the graph, it

follows that f is

increasing on intervals of the form
(

−π
3
+ kπ,

π

3
+ kπ

)

and

decreasing on intervals of the form

(

π

3
+ kπ,

2π

3
+ kπ

)

for each integer k. Additionally, f appears to be concave up on the interval (−1.5, 0) ≈
(

−π
2
, 0
)

and concave down on the interval (0, 1.5) ≈
(

0,
π

2

)

. Again taking into

account the repetitive structure of the graph, it follows that f is

concave up on intervals of the form
(

−π
2
+ kπ, kπ

)

and

concave down on intervals of the form
(

kπ,
π

2
+ kπ

)

for each integer k.

(d) The graph appears to have a local maximum value at approximately
π

3
+ kπ and a

local minimum value at approxiamtely
2π

3
+ kπ for each integer k.

(e) Note
f ′(x) = 1 + 2 cos(2x).

The function f is differentiable everywhere, so the critical numbers of f occur where

f ′(x) = 0, which is when x =
π

3
+ kπ and when x =

2π

3
+ kπ for each integer k. To

apply the Increasing/Decreasing Function Test, use the numbers
π

3
and

2π

3
to divide

(0, π) into three intervals.
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Interval Sign of f ′ Conclusion

(0, π3 ) + f is increasing on (0, π3 )
(π3 ,

2π
3 ) − f is decreasing on (π3 ,

2π
3 )

(2π3 , π) + f is increasing on (2π3 , π)

By the First Derivative Test, the information in the table above and the repetitive

structure of the graph, f has a local maximum value at
π

3
+ kπ

and a local minimum value at
2π

3
+ kπ for each integer k, in agreement with the

approximations given in part (d).

(f) The concavity of f appears to change at multiples of
π

2
; that is, there appear to be

points of inflection at
(

kπ

2
, f

(

kπ

2

))

=

(

kπ

2
,
kπ

2

)

for each integer k.

47. Let f(x) = ln(x
√
x− 1).

(a) The figure below displays the graph of f .

1 2 3 4 5 6 7 8 9 10

-2

-1

1

2

3

(b) The graph of f has no horizontal asymptote , but has a vertical asymptote at x = 1 .

(c) The function appears to be increasing and concave down on the interval (1,∞) .

(d) The function f does not appear to have any local extreme values .

(e) Note that

f(x) = ln(x
√
x− 1) = lnx+ ln

√
x− 1 = lnx+

1

2
ln(x− 1),

so

f ′(x) =
1

x
+

1

2(x− 1)
=

3x− 2

2x(x− 1)
.

The critical numbers of f occur where f ′(x) = 0 and where f ′(x) does not exist.

f ′(x) = 0 when x =
2

3
and does not exist when x = 0 and when x = 1; however, none
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of these numbers is in the domain of f , so none are critical numbers. Because the

function has no critical numbers, there are no local extreme values , in agreement
with the result of part (d).

(f) Because the concavity of f never changes, there are no points of inflection .

49. Let f(x) =
3
√
sinx.

(a) The figure below displays the graph of f . Note that the graph is periodic with period
2π.
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(b) The graph of f does not appear to have any asymptotes .

(c) Taking into account the period of the function, f appears to be

increasing on intervals of the form
(

−π
2
+ 2kπ,

π

2
+ 2kπ

)

and

decreasing on intervals of the form

(

π

2
+ 2kπ,

3π

2
+ 2kπ

)

for each integer k. Additionally, f appears to be

concave up on intervals of the form (−π + 2kπ, 2kπ)

and
concave down on intervals of the form (2kπ, π + 2kπ) ,

again for each integer k.

(d) The graph appears to have a local maximum value at x =
π

2
+ 2kπ and a

local minimum value at x =
3π

2
+ 2kπ for each integer k.

(e) Note

f ′(x) =
1

3
(sinx)−2/3 cosx.

The critical numbers of f occur where f ′(x) = 0 and where f ′(x) does not exist.

f ′(x) is equal to zero when x =
π

2
+ kπ for each integer k and does not exist when

x = kπ for each integer k. To apply the Increasing/Decreasing Function Test, use the

numbers
π

2
, π, and

3π

2
to divide (0, 2π) into four intervals.
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Interval Sign of f ′ Conclusion

(0, π2 ) + f is increasing on (0, π2 )
(π2 , π) − f is decreasing on (π2 , π)
(π, 3π2 ) − f is decreasing on (π, 3π2 )
(3π2 , 2π) + f is increasing on (3π2 , 2π)

By the First Derivative Test, the information in the table above and the periodic

nature of the function, f has a local maximum value at
π

2
+ 2kπ and a

local minimum value at
3π

2
+ 2kπ for each integer k, in agreement with the approx-

imations given in part (d).

(f) The concavity of f appears to change at integer multiples of π; that is, there appear

to be points of inflection at (kπ, f(kπ)) = (kπ, 0) for each integer k.

51. Let y2 = x2(6− x), and consider y ≥ 0. Therefore, y = |x|
√
6− x.

(a) The figure below displays the graph of y2 = x2(6 − x) for y ≥ 0.
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(b) The graph does not appear to have any asymptotes .

(c) The function appears to be

decreasing on the intervals (−∞, 0) and (4, 6)

and increasing on the interval (0, 4) . Additionally, the function appears to be

concave down on the interval (0, 6) and concave up on the interval (−∞, 0) .

(d) The function appears to have a local minimum value at 0 and a local maximum value at 4 .

(e) Differentiating y2 = x2(6− x) implicitly with respect to x yields

2y
dy

dx
= x2(−1) + (6− x)(2x) = −x2 + 12x− 2x2 = −3x(x− 4),

so that
dy

dx
= −3x(x− 4)

y
= − 3x(x− 4)

|x|
√
6− x

.



388 Chapter 4 Applications of the Derivative

The critical numbers of y occur where y′(x) = 0 and where y′(x) does not exist.
y′(x) = 0 when x = 4 and does not exist when x = 0 and when x = 6. To apply the
Increasing/Decreasing Function Test, use the numbers 0 and 4 to divide the domain
of y, the set {x|x ≤ 6}, into three intervals.

Interval Sign of y′ Conclusion

(−∞, 0) − y is decreasing on (−∞, 0)
(0, 4) + y is increasing on (0, 4)
(4, 6) − y is decreasing on (4, 6)

By the First Derivative Test and the information in the table above, y has a

local minimum value at 0 and a local maximum value at 4 , in agreement with the
approximations given in part (d).

(f) The concavity of the graph appears to change at 0; that is, there appears to be a

point of inflection at (0, 0) .

53. Answers will vary. The figure below displays the graph of a function f that is continuous
on the interval [2, 5] and satisfies the following conditions: f ′(2) does not exist, f ′(3) = −1,
f ′′(3) = 0, f ′(5) = 0, f ′′(x) < 0 for 2 < x < 3, and f ′′(x) > 0 for x > 3.
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55. Answers will vary. The figure below displays the graph of a function f that is continuous
on the interval [2, 5] and satisfies the following conditions: f ′(2) = 0, lim

x→3−
f ′(x) = ∞,

lim
x→3+

f ′(x) = ∞, f ′(5) = 0, f ′′(x) > 0 for x < 3, and f ′′(x) < 0 for x > 3.

1 2 3 4 5 6

0.5

1

1.5

2
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57. Answers will vary. The figure below displays the graph of a function f that is continuous
on the interval [−1, 2] and satisfies the following conditions: f(−1) = 1, f(1) = 2, f(2) = 3,

f(0) = 0, f

(

1

2

)

= 3, lim
x→−1+

f ′(x) = −∞, lim
x→1−

f ′(x) = −1, lim
x→1+

f ′(x) = ∞, f has a local

minimum at 0, and f has a local maximum at
1

2
.
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59. Let f(x) =
1

x
+lnx, and suppose the function is defined only on the closed interval

[

1

e
, e

]

.

(a) Absolute extreme values can only occur at endpoints and critical numbers. The

function f is differentiable on the domain

[

1

e
, e

]

, so critical numbers occur where

f ′(x) = 0. Now,

f ′(x) = − 1

x2
+

1

x
=
x− 1

x2
,

so f ′(x) = 0 when x = 1. Evaluating f at the endpoints of the interval

[

1

e
, e

]

and

the critical number 1 yields

f

(

1

e

)

= e+ ln

(

1

e

)

= e− 1 ≈ 1.718

f(1) = 1 + ln 1 = 1

f(e) =
1

e
+ ln e =

1

e
+ 1 ≈ 1.368

The absolute maximum value of f is e− 1, which occurs at x =
1

e
, and the absolute

minimum value of f is 1, which occurs at x = 1 .

(b) With

f ′′(x) =
2

x3
− 1

x2
=

2− x

x3
,

it follows that f ′′(x) > 0 for
1

e
< x < 2 and f ′′(x) < 0 for 2 < x < e. Therefore, f is

concave up on the interval

(

1

e
, 2

)

and concave down on the interval (2, e) .
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(c) The figure below displays the graph of f .
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1

1.5
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61. Let f(x) =
sin(3x)

x
√
4− x2

.

Step 1 The domain of f is the set {x| − 2 < x < 0} ∪ {x|0 < x < 2} . The x-intercepts are ±π
3

,

and there is no y-intercept because x = 0 is not in the domain of f .

Step 2 Because

lim
x→−2+

sin(3x)

x
√
4− x2

= −∞ and lim
x→2−

sin(3x)

x
√
4− x2

= −∞,

the lines x = ±2 are vertical asymptotes . On the other hand, by L’Hôpital’s Rule,

lim
x→0

sin(3x)

x
√
4− x2

= lim
x→0

3 cos(3x)

x ·
(

− x√
4−x2

)

+
√
4− x2

= lim
x→0

3
√
4− x2 cos(3x)

4− 2x2
=

3

2
,

so x = 0 is not a vertical asymptote; rather, the graph of f has a missing point at

(

0,
3

2

)

.

The graph has no horizontal asymptotes because f is not defined for |x| ≥ 2.

Step 3 Now,

f ′(x) =
x
√
4− x2 · 3 cos(3x)− sin(3x)

(

x · 1
2 (x

2 − 4)−1/2(−2x) +
√
4− x2

)

x2(4− x2)

=
3x(4− x2) cos(3x)− (4 − 2x2) sin(3x)

x2(4 − x2)3/2
; and

f ′′(x) =
(−9x6 + 78x4 − 164x2 + 32) sin(3x)− 12x(x4 − 6x2 + 8) cos(3x)

x3(4− x2)5/2
,

where the second derivative was obtained using Mathematica. The critical numbers
of f occur where f ′(x) = 0 and where f ′(x) does not exist. Using the command

Solve [ D [ Sin[3x]/(x Sqrt[4-x2]), x ] == 0, x ]

in Wolfram Alpha, we find that f ′(x) = 0 when x ≈ ±1.642 and x ≈ ±1.908. Now,
f ′(x) does not exist when x = 0 and when x = ±2; however, because none of these val-

ues are in the domain of f , none are critical numbers. Therefore, ±1.642 and ±1.908

are the critical numbers of f . At the points (±1.642,−0.521) and (±1.908,−0.464),
the tangent lines are horizontal.
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Step 4 To apply the Increasing/Decreasing Function Test, use the numbers 0, ±1.642 and
±1.908 to divide the interval (−2, 2) into six subintervals.

Interval Sign of f ′ Conclusion

(−2,−1.908) + f is increasing on (−2,−1.908)
(−1.908,−1.642) − f is decreasing on (−1.908,−1.642)
(−1.642, 0) + f is increasing on (−1.642, 0)
(0, 1.642) − f is decreasing on (0, 1.642)
(1.642, 1.908) + f is increasing on (1.642, 1.908)
(1.908, 2) − f is decreasing on (1.908, 2)

Step 5 By the First Derivative Test and the information in the table above, f has a local
maximum value at ±1.908 and a local minimum value at ±1.642. The

local maximum values are f(±1.908) ≈ −0.461 ,

and the
local minimum values are f(±1.642) ≈ −0.521 .

Step 6 The second derivative does not exist when x = 0 and when x = ±2 and is equal to
zero when x ≈ ±0.763 and when x ≈ ±1.826. These latter values were obtained using
the command

Solve [ D [ Sin[3x]/(x Sqrt[4-x2]), {x, 2} ] == 0, x ]

in Wolfram Alpha. Use the numbers 0, ±0.763 and ±1.826 to divide the interval
(−2, 2) into six subintervals, and determine the sign of f ′′ on each subinterval.

Interval Sign of f ′′ Conclusion

(−2,−1.826) − f is concave down on (−2,−1.826)
(−1.826,−0.763) + f is concave up on (−1.826,−0.763)
(−0.763, 0) − f is concave down on (−0.763, 0)
(0, 0.763) − f is concave down on (0, 0.763)
(0.763, 1.826) + f is concave up on (0.763, 1.826)
(1.826, 2) − f is concave down on (1.826, 2)

The concavity of f changes at approximately ±0.763 and ±1.826, so the points

(±0.763, 0.534) and (±1.826,−0.484)

are approximate points of inflection of f .

Step 7 The figure below displays the graph of f . The local extreme values are highlighted
by closed circles, and the points of inflection are highlighted by closed squares.
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(1.826, –0.484)

(–1.908, –0.461)
(1.908, –0.461)

(–1.642, –0.521) (1.642, –0.521)
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63. Let f(x) = x1/x.

Step 1 The domain of f is the set {x|x > 0} . There are no x-intercepts , and there is

no y-intercept because x = 0 is not in the domain of f .

Step 2 At ∞, the expression x1/x is an indeterminate form of the type ∞0. Let y = x1/x.
Then

ln y = lnx1/x =
1

x
lnx =

lnx

x
,

which is an indeterminate form at ∞ of the type
∞
∞ . Using L’Hôpital’s Rule,

lim
x→∞

ln y = lim
x→∞

lnx

x
= lim

x→∞

1
x

1
= 0.

Because lim
x→∞

ln y = 0, it follows that

lim
x→∞

y = lim
x→∞

x1/x = e0 = 1,

so y = 1 is a horizontal asymptote . At 0+, the expression x1/x is of the form 0∞,

which is not an indeterminate form; rather,

lim
x→0+

x1/x = 0.

The graph of f has a missing point at (0, 0) and not a vertical asymptote at x = 0.

Step 3 To determine f ′(x), first take the natural logarithm of both sides of f(x) = x1/x to

obtain ln f(x) = lnx1/x =
1

x
lnx. Now, by implicit differentiation,

1

f(x)
f ′(x) =

1

x
· 1
x
− 1

x2
lnx =

1− lnx

x2
,

so that

f ′(x) = x1/x
1− lnx

x2
.

Next,

f ′′(x) = x1/x
d

dx

(

1− lnx

x2

)

+
1− lnx

x2
d

dx
x1/x

= x1/x
x2
(

− 1
x

)

− (1− lnx)(2x)

x4
+ x1/x

(

1− lnx

x2

)2

= x1/x

[

2 lnx− 3

x3
+

(

1− lnx

x2

)2
]

.

The critical numbers of f occur where f ′(x) = 0 and where f ′(x) does not exist. Now,
f ′(x) = 0 when x = e and does not exist when x = 0. However, x = 0 is not in the
domain of f , so x = 0 is not a critical number of f . Therefore, e is the only critical

number of f . At the point (e, e1/e) ≈ (2.718, 1.445), the tangent line is horizontal.

Step 4 To apply the Increasing/Decreasing Function Test, use the number e to divide the
interval (0,∞) into two subintervals.
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Interval Sign of f ′ Conclusion

(0, e) + f is increasing on (0, e)
(e,∞) − f is decreasing on (e,∞)

Step 5 By the First Derivative Test and the information in the table above, f has a local

maximum value at e. The local maximum value is f(e) = e1/e ≈ 1.445 .

Step 6 The second derivative exists for all x > 0 and is equal to zero when x ≈ 0.582 and
when x ≈ 4.368. These latter values were obtained using the command

Solve [ D [ x1/x, {x, 2} ] == 0, x ]

in Wolfram Alpha. Use the numbers 0.582 and 4.368 to divide the interval (0,∞) into
three subintervals, and determine the sign of f ′′ on each subinterval.

Interval Sign of f ′′ Conclusion

(0, 0.582) + f is concave up on (0, 0.582)
(0.582, 4.368) − f is concave down on (0.582, 4.368)
(4.368,∞) + f is concave up on (4.368,∞)

The concavity of f changes at approximately 0.582 and 4.368, so the points

(0.582, 0.395) and (4.368, 1.401)

are approximate points of inflection of f .

Step 7 The figure below displays the graph of f . The local extreme value is highlighted by a
closed circle, and the points of inflection are highlighted by closed squares.
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(4.368, 1.401)
(e, e1/e

)

4.7 Optimization

Applications and Extensions

1. Let x denote the length of fencing used to enclose the plot on each side perpendicular to the
highway and y the length of fencing used parallel to the highway (see the diagram below).
The area A enclosed by the fencing is then A = xy. With 3000 m of fencing available, x
and y are related by the equation

2x+ y = 3000 or y = 3000− 2x.

Substituting for y in the area formula yields

A = x(3000− 2x) = 3000x− 2x2.
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The domain of this function is the closed interval [0, 1500]. The function A is differentiable
on the open interval (0, 1500), so the critical numbers occur where A′(x) = 0. Now,

A′(x) = 3000− 4x,

so A′(x) = 0 when x = 750. Evaluating A at the endpoints of the interval [0, 1500] and at
the critical number 750 yields

A(0) = 0, A(750) = 1, 125, 000, and A(1500) = 0.

The largest area that can be enclosed is therefore 1,125,000 m2 , achieved by using 1500

m of fencing parallel to the highway and 750 m of fencing on each side perpendicular to
the highway.

Highway

x x

Y

3. Let x and y denote the width and length of the rectangular plot enclosed on all sides by
fencing (see the diagram below). The area A enclosed by the fencing is then A = xy. With
L m of fencing available, x and y are related by the equation

2x+ 2y = L or y =
L

2
− x.

Substituting for y in the area formula yields

A = x

(

L

2
− x

)

=
L

2
x− x2.

The domain of this function is the closed interval

[

0,
L

2

]

. The function A is differentiable

on the open interval

(

0,
L

2

)

, so the critical numbers occur where A′(x) = 0. Now,

A′(x) =
L

2
− 2x,

so A′(x) = 0 when x =
L

4
. Evaluating A at the endpoints of the interval

[

0,
L

2

]

and at

the critical number
L

4
yields

A(0) = 0, A

(

L

4

)

=
L2

16
, and A

(

L

2

)

= 0.

The largest area that can be enclosed is therefore
L2

16
m2, achieved by using L/4 m of

fencing on each side of the rectangle; that is, by making a square plot with dimensions

L

4
m × L

4
m .

x x

y

y
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5. Using the diagram in the text, let x denote the length of each of the three vertical sides and
y denote the length of each of the two horizontal sides. The area A enclosed by the fencing
is then A = xy. With 200 m of fencing available, x and y are related by the equation

2y + 3x = 200 or y = 100− 3

2
x.

Substituting for y in the area formula yields

A = x

(

100− 3

2
x

)

= 100x− 3

2
x2.

The domain of this function is the closed interval

[

0,
200

3

]

. The function A is differentiable

on the open interval
(

0, 2003
)

, so the critical numbers occur where A′(x) = 0. Now,

A′(x) = 100− 3x,

so A′(x) = 0 when x =
100

3
. Evaluating A at the endpoints of the interval

[

0,
200

3

]

and

at the critical number
100

3
yields

A(0) = 0, A

(

100

3

)

=
5000

3
, and A

(

200

3

)

= 0.

The largest area that can be enclosed is therefore
5000

3
m2 .

7. Let x denote the side length of the square cut from each corner of the base (see the diagram
below). When the sides are turned up, the resulting box will have a square base 12−2x cm
on a side and a height of x cm; the volume will therefore be V = x(12− 2x)2 = 4x(6−x)2.
Because both x ≥ 0 and 12−2x ≥ 0, it follows that x ≤ 6, so the domain of V is the closed
interval [0, 6]. The function V is differentiable on the open interval (0, 6), so the critical
numbers occur where V ′(x) = 0. Now,

V ′(x) = 4x · 2(6− x)(−1) + 4(6− x)2 = (6− x)(−8x+ 24− 4x) = (6− x)(24− 12x),

so the only critical number inside the open interval (0, 6) is x = 2, where V ′(2) = 0. Note
that x = 6 is not in the open interval (0, 6). Evaluating V at the endpoints of the interval
[0, 6] and at the critical number 2 yields

V (0) = 0, V (2) = 128, and V (6) = 0.

The largest volume is therefore achieved when x = 2, and the box with the largest volume
has a square base 12− 2(2) = 8 cm on a side and a height of 2 cm; that is, the box with

the largest possible volume has dimensions 8 cm × 8 cm × 2 cm .

12 – 2x

12 – 2x

x
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9. Let s denote the side length of the square base and h denote the height of the open top
box. The surface area A of the box is then

A = 4sh+ s2,

where the first term accounts for the area of the four vertical rectangular sides of the box
and the second term accounts for the area of the base. Given that the box is to have a
volume of 2000 cm3, s and h are related by the equation

s2h = 2000 or h =
2000

s2
.

Substituting for h in the area formula yields

A =
8000

s
+ s2.

The domain of A is the interval (0,∞). Now,

A′(s) = −8000

s2
+ 2s =

2(s3 − 4000)

s2
,

so the only critical number inside the open interval (0,∞) is s = 10 3
√
4, where A′(s) = 0.

Note that s = 0 is not in the domain of A. Using the Second Derivative Test,

A′′(s) =
16000

s3
+ 2 so A′′(10

3
√
4) = 6 > 0

and A has a local minimum value at 10 3
√
4. Because A′′(s) > 0 for all s > 0, the local

minimum is also an absolute minimum. Therefore, the minimum amount of material is
used to make the box when s = 10 3

√
4 and

h =
2000

100 3
√
16

=
20 3

√
4

4
= 5

3
√
4.

The box should have a square base measuring 10 3
√
4 ≈ 15.874 cm on a side and a height of

5 3
√
4 ≈ 7.937 cm; that is, the dimensions of the box using the minimum amount of material

are

10 3
√
4× 10 3

√
4× 5 3

√
4 ≈ 15.874 cm × 15.874 cm × 7.937 cm .

11. Let r denote the radius and h the height of the cylindrical can. The cost C of the material
needed to manufacture the can is

C = 2πr2(20) + 2πrh(15) = 40πr2 + 30πrh,

where the first term accounts for the cost of the top and bottom of the can and the second
term accounts for the lateral surface area of the can. Given that the can is to have a
capacity of the 10 m3, r and h are related by the equation

πr2h = 10 or h =
10

πr2
.

Substituting for h in the cost formula yields

C = 40πr2 +
300

r
.

The domain of C is the interval (0,∞). Now,

C′(r) = 80πr − 300

r2
,
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so the only critical number inside the open interval (0,∞) is r =
3

√

15

4π
, where C′(r) = 0.

Note that r = 0 is not in the domain of C. Using the Second Derivative Test,

C′′(r) = 80π +
600

r3
so C′′

(

3

√

15

4π

)

= 240π > 0,

and C has a local minimum value at
3

√

15

4π
. Because C′′(r) > 0 for all r > 0, the local

minimum is also an absolute minimum. Therefore, the minimum cost of material is achieved

when r =
3

√

15

4π
and

h =
10

π 3

√

225
16π2

=
8

3
3

√

15

4π
.

The can should have a radius of
3

√

15

4π
≈ 1.061 m and a height of

8

3
3

√

15

4π
≈ 2.829 m .

13. Let x denote the number of $1 increases in the rental price above the original $18 per day
price. The rental price is then 18+ x and the number of cars rented is 24− x so the rental
income I is

I = (18 + x)(24 − x) = 432 + 6x− x2.

The domain of I is the closed interval [0, 24]. The function I is differentiable on the open
interval (0, 24), so the critical numbers occur where I ′(x) = 0. Now,

I ′(x) = 6− 2x,

so I ′(x) = 0 when x = 3. Evaluating I at the endpoints of the interval [0, 24] and at the
critical number 3 yields

I(0) = 432, I(3) = 212 = 441, and I(24) = 0.

Rental income is therefore maximized when x = 3, meaning that the agency should charge

18 + 3 = $21 per day to maximize income.

15. Because distance is non-negative, minimizing the square of the distance will produce the
same result as minimizing the distance but does not require the use of square roots. Let D
denote the square of the distance between an arbitrary point on the graph of the parabola

y = x2 and the point

(

2,
1

2

)

. Then

D = (x− 2)2 +

(

y − 1

2

)2

= (x− 2)2 +

(

x2 − 1

2

)2

= x2 − 4x+ 4 + x4 − x2 +
1

4

= x4 − 4x+
17

4
.

The domain of D is all real numbers, and because D is differentiable everywhere, the
critical numbers of D occur where D′(x) = 0. Now,

D′(x) = 4x3 − 4 = 4(x− 1)(x2 + x+ 1),

so x = 1 is the only critical number. Using the Second Derivative Test,

D′′(x) = 12x2 so D′′(1) = 12 > 0
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and D has a local minimum value at 1. Because D′′(x) ≥ 0 for all x, the local minimum is

also an absolute minimum. The point (1, 12) = (1, 1) on the graph of the parabola y = x2

is closest to the point

(

2,
1

2

)

.

17. Because distance is non-negative, minimizing the square of the distance will produce the
same result as minimizing the distance but does not require the use of square roots. Let D
denote the square of the distance between an arbitrary point on the graph of the parabola
y = 4− x2 and the point (6, 2). Then

D = (x− 6)2 + (y − 2)2 = (x− 6)2 + (4− x2 − 2)2

= x2 − 12x+ 36 + 4− 4x2 + x4

= x4 − 3x2 − 12x+ 40.

The domain of D is all real numbers, and because D is differentiable everywhere, the
critical numbers of D occur where D′(x) = 0. Now,

D′(x) = 4x3 − 6x− 12.

Using the computer algebra system Maple, the only critical number is x ≈ 1.784. Using
the Second Derivative Test,

D′′(x) = 12x2 − 6 so D′′(1.784) ≈ 32.192 > 0

and D has a local minimum value at 1.784. As

lim
x→±∞

D(x) = ∞,

it follows that the local minimum is also an absolute minimum. The point

(1.784, 4− 1.7842) ≈ (1.784, 0.817) on the graph of the parabola y = 4 − x2 is closest

to the point (6, 2).

19. Let x denote the traveling speed of a truck and let

C(x) =

(

1600

x
+ x

)

a+
200

x
b+ c

be the cost associated with a 200-mile trip where a is the cost per gallon for gasoline, b is
the hourly rate paid to the driver, and c is a commission paid to the driver. With a top
speed of 75 mph, the domain of C is the interval (0, 75]. The critical numbers of C occur
where C′(x) = 0 or where C′(x) does not exist. Now,

C′(x) =

(

1− 1600

x2

)

a− 200

x2
b,

so C′(x) is equal to zero when

x = ±
√

1600a+ 200b

a

and does not exist when x = 0. Of these numbers, only

√

1600a+ 200b

a
lies inside the

interval (0, 75). Using the Second Derivative Test,

C′′(x) =
3200

x3
a+

400

x3
b > 0

for all x in (0, 75), so C has a local and an absolute minimum at

x =

√

1600a+ 200b

a
.
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(a) With a = $3.50, b = 0, and c = 0, the speed that minimizes cost is

x =

√

1600(3.50)+ 200(0)

3.50
=

√

5600

3.50
=

√
1600 = 40 miles per hour .

(b) With a = $3.50, b = $10.00, and c = $500, the speed that minimizes cost is

x =

√

1600(3.50)+ 200(10.00)

3.50
=

√

7600

3.50
≈ 46.6 miles per hour .

(c) With a = $4.00, b = $20.00, and c = 0, the speed that minimizes cost is

x =

√

1600(4.00) + 200(20.00)

4.00
=

√

10400

4.00
=

√
2600 ≈ 51.0 miles per hour .

21. (a) Let x denote the distance from the point on the road closest to house A to the point
where the path from house A to house B meets the road. Then the length L of the
path from house A to house B is

L =
√

q2 + x2 +
√

(p− x)2 + r2,

where the first term accounts for the distance from house A to the road and the second
term accounts for the distance from the road to house B. The domain of this function
is the closed interval [0, p], and the critical numbers occur where L′(x) = 0. Now,

L′(x) =
x

√

q2 + x2
− p− x
√

(p− x)2 + r2
,

so L′(x) = 0 when

x
√

q2 + x2
=

p− x
√

(p− x)2 + r2

x2[(p− x)2 + r2] = (p− x)2(q2 + x2)

x2r2 = (p− x)2q2

xr = |p− x|q = (p− x)q because p ≥ x

x =
pq

q + r
.

Evaulating L at the endpoints of the interval [0, p] and at the critical number
pq

q + r
yields

L(0) = q +
√

r2 + p2,

L

(

pq

q + r

)

=

√

q2 +

(

pq

q + r

)2

+

√

(

p− pq

q + r

)2

+ r2

=

√

q2 +

(

pq

q + r

)2

+

√

(

pr

q + r

)2

+ r2

=

√

q2

(q + r)2
[(q + r)2 + p2] +

√

r2

(q + r)2
[p2 + (q + r)2]

=
q

q + r

√

p2 + (q + r)2 +
r

q + r

√

p2 + (q + r)2 =
√

p2 + (q + r)2, and

L(p) =
√

q2 + p2 + r.
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Because p, q, and r are all positive numbers,

q+
√

r2 + p2 =

√

q2 + 2q
√

r2 + p2 + r2 + p2 >
√

q2 + 2qr + r2 + p2 =
√

(q + r)2 + p2,

and
√

q2 + p2+r =

√

q2 + p2 + 2r
√

q2 + p2 + r2 >
√

q2 + 2qr + r2 + p2 =
√

(q + r)2 + p2.

Therefore, the length of the shortest path that goes from house A to the road and

then on to house B is
√

(q + r)2 + p2 .

(b) Following the hint, reflect the point B across the road to the point C (see the diagram
below). Note that any path from A to C is equivalent to (has the same distance as)
the path from A to B obtained by reflecting the portion of the path to the left of the
road across to the right side of the road. Additionally, the shortest path from A to
C is a straight line, and therefore has a distance equal to the hypotenuse of triangle
ADC:

√

(q + r)2 + p2. Therefore, the length of the shortest path from A to the road

and then on to B is
√

(q + r)2 + p2 , matching the result from part (a).

A

B
C

q

rr

p

D

23. The shortest beam will simultaneously be in contact with the wall that is being supported,
the 2-m high wall in the middle, and the ground. Let x and h be as shown in the diagram
below. The length of the ladder is then

L =
√

(x+ 5)2 + h2.

By similar triangles,
x

2
=
x+ 5

h
so h =

2(x+ 5)

x
.

Substituting for h in the length formula yields

L =

√

(x+ 5)2 +

(

2(x+ 5)

x

)2

=
x+ 5

x

√

x2 + 4 =

(

1 +
5

x

)

√

x2 + 4.

The domain of L is the interval (0,∞). Now,

L′(x) =

(

1 +
5

x

)

· x√
x2 + 4

+
√

x2 + 4 ·
(

− 5

x2

)

=
x3 + 5x2 − 5x2 − 20

x2
√
x2 + 4

=
x3 − 20

x2
√
x2 + 4

,

so the only critical number inside the open interval (0,∞) is x = 3
√
20, where L′(x) = 0.

Note that x = 0 is not in the domain of L. Using the Second Derivative Test,

L′′(x) =
x2

√
x2 + 4 · 3x2 − (x3 − 20) ·

(

x3

√
x2+4

+ 2x
√
x2 + 4

)

x4(x2 + 4)

=
3x4(x2 + 4)− x3(x3 − 20)− 2x(x3 − 20)(x2 + 4)

x4(x2 + 4)3/2

=
3x6 + 12x4 − x6 + 20x3 − 2x6 − 8x4 + 40x3 + 160x

x4(x2 + 4)3/2

=
4x4 + 60x3 + 160x

x4(x2 + 4)3/2
=

4x3 + 60x2 + 160

x3(x2 + 4)3/2
,



4.7 Optimization 401

so L′′(x) > 0 for all x > 0 and L has a local and absolute minimum at 3
√
20. The length of

the shortest beam that can be used to brace the wall is therefore

L =

(

1 +
5

3
√
20

)√

3
√
400 + 4 ≈ 9.582 meters .

The angle of elevation of the beam is

tan−1 2
3
√
20

≈ 0.635 rad ≈ 36.383◦ .

x5

2

h

Well being

supported

25. Using the hint (that is, choosing the width of the beam to be 2x and the depth of the
beam to be 2y) gives

S = k(2x)(2y)2 = 8kxy2,

where k is a positive constant of proportionality. Solve the equation of the cross section,

10x2 + 9y2 = 90, for y2 = 10− 10

9
x2 and then substitute this expression into the formula

for S, to obtain

S = 8kx

(

10− 10

9
x2
)

= 80kx− 80

9
kx3.

The domain of this function is the closed interval [0, 3], and the critical numbers occur
where S′(x) = 0. Now,

S′(x) = 80k − 80

3
kx2,

so the only critical number inside the open interval (0, 3) is x =
√
3, where S′(x) = 0. Note

that x = −
√
3 is not in the domain of S. Evaluating S at the endpoints of the interval

[0, 3] and at the critical number
√
3 yields

S(0) = 0, S(
√
3) = 80k

√
3− 80k

√
3

3
=

160k
√
3

3
, and S(3) = 0.

Therefore, S achieves its absolute maximum value when x =
√
3 and y =

√

10− 10

3
=

2
√
15

3
. The strongest beam that can be cut from a log whose cross section has the form of

the ellipse 10x2 + 9y2 = 90 has a width of 2
√
3 and a depth of

4
√
15

3
.

27. Let x denote the number of cases produced and p denote the price of a case. Solve the
equation

x = 1430− 11

6
p for p = 780− 6

11
x,

and then substitute for p in the formula

P = xp− 132x = x

(

780− 6

11
x

)

− 132x = 648x− 6

11
x2.
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The domain for P is the closed interval [0, 1100], and the critical numbers occur where
P ′(x) = 0. Now,

P ′(x) = 648− 12

11
x,

so x = 594 is the only critical number. Evaluating P at the endpoints of the interval
[0, 1100] and at the critical number 594 yields

P (0) = 0, P (594) = 192, 456, and P (1100) = 52, 800.

Therefore, P achieves its absolute maximum when x = 594 and

p = 780− 6

11
(594) = 456.

To maximize profit, the winemaker should produce 594 cases of wine and sell them for

$456 per case .

29. Maximizing the capacity of the trough will be accomplished by maximizing the cross-
sectional area of the trough. Let θ denote the angle between the two sides of the V-shaped
trough. The cross-sectional area A of the trough is then

A =
1

2
282 sin θ = 392 sin θ.

The domain of A is the closed interval [0, π], and the critical numbers occur where A′(θ) =
0. Now,

A′(θ) = 392 cosθ,

so θ =
π

2
is the only critical number. Evaluating A at the endpoints of the interval [0, π]

and at the critical number
π

2
yields

A(0) = 0, A
(π

2

)

= 392, and A(π) = 0.

Therefore, A achieves its absolute maximum when θ =
π

2
, so the capacity of the trough is

maximum when the angle between the sides is
π

2
.

31. Let r denote the radius of the semicircular ceiling (so that the width of the floor is 2r) and
h denote the height of the vertical walls. Without loss of generality suppose that the floor
and vertical walls cost one unit per square meter so that the ceiling costs three units per
square meter. The cost C for each one-meter long section of the tunnel is then

C = 2h(1) + 2r(1) + πr(3) = 2h+ 2r + 3πr,

where the first term accounts for the cost of the vertical walls, the second term accounts
for the cost of the floor, and the final term accounts for the cost of the ceiling. Let A
denote the fixed cross-sectional area of the tunnel, so that

A = 2rh+
1

2
πr2 or h =

A− 1
2πr

2

2r
=
A

2r
− πr

4
.

Substituting for h in the cost formula yields

C = 2

(

A

2r
− πr

4

)

+ 2r + 3πr =
A

r
+

(

5π

2
+ 2

)

r.
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In order for h to be non-negative, we must have

A

2r
− πr

4
≥ 0 or r ≤

√

2A

π
.

The domain of C is therefore the interval

(

0,

√

2A

π

]

. Now,

C′(r) = −A

r2
+

(

5π

2
+ 2

)

,

so the only critical number inside the open interval

(

0,

√

2A

π

)

is r =

√

2A

5π + 4
, where

C′(r) = 0. Note that r = 0 is not in the domain of C. Using the Second Derivative Test,

C′′(r) =
2A

r3
> 0

for all r > 0. Therefore, C has both a local and an absolute minimum when r =

√

2A

5π + 4
.

Finally, the most economical ratio of the diameter of the semicircular cylinder to the height
of the vertical walls is

2r

h
=

4r2

A− 1
2πr

2
=

4 · 2A
5π+4

A− 1
2π · 2A

5π+4

=
8

5π+4

1− π
5π+4

=
8

4π + 4
=

2

π + 1
.

33. Let the weaker light source have intensity I∗ and be located at x = 0. The other light
source has intensity 8I∗ and is located at x = 6. For 0 < x < 6, the intensity of light I at
location x is

I =
kI∗

x2
+

8kI∗

(6− x)2
,

where k is the constant of proportionality in the inverse square law, the first term accounts
for illumination from the weaker light source and the second term accounts for illumination
from the stronger source. Now,

I ′(x) = −2kI∗

x3
+

16kI∗

(6− x)3
,

so I ′(x) is equal to zero when

2kI∗

x3
=

16kI∗

(6− x)3

(6− x)3 = 8x3

6− x = 2x

x = 2.

Note that neither x = 0 nor x = 6 are in the domain of I, so 2 is the only critical number.
Using the Second Derivative Test,

I ′′(x) =
6kI∗

x4
+

48kI∗

(6 − x)4
> 0

for all x inside the interval (0, 6). Therefore, I has both a local and an absolute minimum
when x = 2, so the point between the two light sources at which illumination is minimum is

2 meters from the weaker light source .
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35. Let x denote the side length of the square and r denote the radius of the circle made from
the two pieces of wire. The length L of the wire is then

L = 4x+ 2πr.

Given that the area enclosed by the two pieces of wire is to be 64 cm2, x and r are related
by the equation

x2 + πr2 = 64 or x =
√

64− πr2.

In order to have x defined, we must have

πr2 ≤ 64 or r ≤ 8√
π
.

Substituting for x in the length formula yields

L = 4
√

64− πr2 + 2πr,

where the domain is the closed interval

[

0,
8√
π

]

. Now,

L′(r) = 4
−πr√

64− πr2
+ 2π,

so the only critical number inside the open interval

(

0,
8√
π

)

occurs when

4πr√
64− πr2

= 2π

2r =
√

64− πr2

4r2 = 64− πr2

(4 + π)r2 = 64

r =
8√

4 + π
.

Note that neither r = − 8√
π

nor r = − 8√
4 + π

is in the domain of L, and r =
8√
π

is not

inside the open interval

(

0,
8√
π

)

. Evaluating L at the endpoints of the interval

[

0,
8√
π

]

and at the critical number
8√
4 + π

yields

L(0) = 32, L

(

8√
4 + π

)

=
64 + 16π√

4 + π
≈ 42.758, and L

(

8√
π

)

= 16
√
π ≈ 28.359.

Therefore, the

minimum length of wire that can be used is approximately 28.359 cm ,

and the

maximum length wire that can be used is approximately 42.758 cm .

37. Let x denote the length of wire used to make the square. Then the side length of the
square is x/4, the length of wire used to make the circle is 35 − x and the radius of the

resulting circle is
35− x

2π
. The area A enclosed by the two figures is then

A =
(x

4

)2

+ π

(

35− x

2π

)2

=
x2

16
+

(35− x)2

4π
.
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The domain of this function is the closed interval [0, 35], and the critical numbers occur
where A′(x) = 0. Now,

A′(x) =
x

8
− 35− x

2π
,

so A′(x) = 0 when

x

8
=

35− x

2π
2πx = 280− 8x

x =
140

4 + π
.

Evaluating A at the endpoints of the interval [0, 35] and at the critical number
140

4 + π
yields

A(0) =
352

4π
≈ 97.482;

A

(

140

4 + π

)

=
1

16

(

140

4 + π

)2

+
1

4π

(

35− 140

4 + π

)2

=
702

4(4 + π)2
+

352π2

4π(4 + π)2
=

702 + 352π

4(4 + π)2
≈ 42.883; and

A(35) =
352

16
= 76.5625.

(a) To enclose the minimum area, the wire should be cut so that

140

4 + π
≈ 19.603 cm

are used for the square and the remaining

35− 140

4 + π
=

35π

4 + π
≈ 15.397 cm

are used for the circle.

(b) To enclose the maximum area, the entire length of wire should be formed into a circle

since this corresponds to choosing x = 0.
(c) The figure below displays the graph of the area enclosed as a function of the length

of the wire used to make the square. The absolute minimum occurs for x a little less
than 20 cm, confirming the result of part (a); the absolute maximum occurs for x = 0,
confirming the result of part (b).
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39. Let r denote the radius and h the height of the cylindrical can. The surface area A is then

A = 2πr2 + 2πrh,

where the first term accounts for the area of the top and bottom of the can and the second
term accounts for the lateral surface area. Given that the volume of the can is fixed to be
V , r and h are related by the equation

V = πr2h or h =
V

πr2
.

Substituting for h in the area formula yields

A = 2πr2 + 2πr
V

πr2
= 2πr2 +

2V

r
.

The domain for this function is the interval (0,∞). Now,

A′(r) = 4πr − 2V

r2
,

so the only critical number inside the open interval (0,∞) is r =
3

√

V

2π
, where A′(r) = 0.

Note that r = 0 is not in the domain of A. Using the Second Derivative Test,

A′′(r) = 4π +
4V

r3
> 0

for all r > 0. Therefore, A has a local and an absolute minimum at
3

√

V

2π
. When r =

3

√

V

2π
,

h =
V

π
3

√

(

V
2π

)2
=
V 3

√

V
2π

π V
2π

= 2
3

√

V

2π
= 2r,

so the cylindrical container of fixed volume which uses the least material has a height that
is twice its radius.

41. Let (x, y) = (x, 9 − x2) be the coordinates of the vertex of the rectangle that lies on the
graph of the parabola. Then the width of the rectangle is x, the height is 9− x2, and the
area is

A = x(9 − x2) = 9x− x3.

The domain of this function is the closed interval [0, 3], and the critical numbers occur
where A′(x) = 0. Now,

A′(x) = 9− 3x2,

so the only critical number inside the open interval (0, 3) is x =
√
3, where A′(x) = 0. Note

that x = −
√
3 is not in the domain of A. Evaluating A at the endpoints of the interval

[0, 3] and at the critical number
√
3 yields

A(0) = 0, A(
√
3) = 6

√
3, and A(3) = 0.

Therefore, A has an absolute maximum value of 6
√
3; in other words, the largest area of

a rectangle with one vertex on the parabola y = 9 − x2, another at the origin, and the

remaining two on the positive coordinate axes is 6
√
3 square units .
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43. Let a and b be positive real numbers and let m denote the slope of a line through the point
(a, b).

• Case I: m > 0.

Let m = b/a. The line y = mx = bx/a passes through the origin, so x0 = y0 = 0

and the distance between the points (x0, 0) and (0, y0) is zero, an absolute minimum.

• Case II: m < 0 so that x0 > 0 and y0 > 0.
The equation of the line of slope m which passes through the point (a, b) is

y − b = m(x− a) or y = mx+ b−ma.

The y-intercept of this line is y0 = b−ma and the x-intercept is x0 =
am− b

m
, so the

distance D between the points (x0, 0) and (0, y0) is

D =

√

(

am− b

m

)2

+ (b −ma)2 = |b−ma|
√

1 +
1

m2
= (b −ma)

√

1 +
1

m2
,

where the absolute value could be removed because a > 0, b > 0, and m < 0 so that
b−ma > 0 The critical numbers of D occur where D′(m) = 0. Now,

D′(m) = (b−ma) · − 2
m3

2
√

1 + 1
m2

− a

√

1 +
1

m2
= − 1

√

1 + 1
m2

(

b−ma

m3
+ a+

a

m2

)

,

so D′(m) = 0 when

b−ma

m3
= −

(

a+
a

m2

)

b−ma = −am3 −ma

m = − 3

√

b

a
.

As there is just the one critical number and

lim
m→0−

D(m) = ∞ and lim
m→−∞

D(m) = ∞,

D has an absolute minimum at − 3

√

b

a
. The line

y = − 3

√

b

a
x+ b+ a

3

√

b

a

produces the minimum distance between the points (x0, 0) and (0, y0), where x0 and
y0 are the x- and y-intercepts, respectively, of the line.

45. Let
F =

cmg

c sin θ + cos θ
,

where the domain is the closed interval [0, π/2]. The critical numbers of F occur where
F ′(θ) = 0 or where F ′(θ) does not exist. Now,

F ′(θ) =
−cmg

(c sin θ + cos θ)2
· (c cos θ − sin θ).
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F ′(θ) exists for each θ in the open interval (0, π/2) and is equal to zero when

c cos θ − sin θ = 0 or tan θ = c.

Based on the diagram below, when tan θ = c,

sin θ =
c√

c2 + 1
and cos θ =

1√
c2 + 1

,

so, evaluating F at the endpoints of the interval [0, π/2] and at the critical number asso-
ciated with tan θ = c yields

F (0) = cmg, F (tan−1 c) =
cmg√
c2 + 1

, and F
(π

2

)

= mg.

Because

c√
c2 + 1

< c its follows that F (tan−1 c) = mg · c√
c2 + 1

< cmg = F (0),

and because

c√
c2 + 1

< 1 its follows that F (tan−1 c) = mg · c√
c2 + 1

< mg = F
(π

2

)

,

so F has an absolute minimum when tan θ = c.

c

c 2
+1

1

47. Let x denote the distance from the observer to the wall, and let the angles θ and ψ be as
noted in the diagram below. Then

tan θ = tan ((θ + ψ)− ψ) =
tan(θ + ψ)− tanψ

1 + tan(θ + ψ) tanψ
=

7
x − 3

x

1 + 7
x · 3

x

=
4x

x2 + 21

and

θ = tan−1

(

4x

x2 + 21

)

.

The domain of this function is the interval (0,∞), and the critical numbers occur where
θ′(x) = 0. Now,

θ′(x) =
1

1 +
(

4x
x2+21

)2 · (x
2 + 21) · 4− 4x · 2x

(x2 + 21)2

=
4x2 + 84− 8x2

(x2 + 21)2 + 16x2
= 4

21− x2

(x2 + 21)2 + 16x2
,

so the only critical number inside the open interval (0,∞) is x =
√
21, where θ′(x) = 0.

Note that x = −
√
21 is not in the domain of θ. As there is just this one critical number

and
lim

x→0+
θ(x) = 0 and lim

x→∞
θ(x) = 0,
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θ has an absolute maximum at
√
21. Therefore, to obtain the most favorable view of the

picture, the observer should stand
√
21 ≈ 4.583 meters from the wall.

4

3

x

49. Let a, b, and c be positive constants and consider the function f(x) = aecx + be−cx. Then

f ′(x) = acecx − bce−cx,

and the only critical number occurs when

acecx = bce−cx

e2cx =
b

a

x =
1

2c
ln
b

a
.

Next,
f ′′(x) = ac2ecx + bc2e−cx ≥ 0

for all x. Therefore, f achieves an absolute minimum value when x =
1

2c
ln
b

a
, and that

absolute minimum value is

f

(

1

2c
ln
b

a

)

= ae
1
2
ln b

a + be−
1
2
ln b

a = a

√

b

a
+ b

√

a

b
= 2

√
ab.

Challenge Problems

51. Based on the diagram in the text,

cos θ =
20

s
so s =

20

cos θ

and

I =
sin θ

s
=

sin θ cos θ

20
=

sin(2θ)

40
.

The domain of this function is the interval [0, π/2). Note that s is undefined for θ = π/2,
so this number cannot be included in the domain. Now,

I ′(θ) =
1

20
cos(2θ),

so I ′(θ) = 0 on the open interval (0, π/2) when θ = π/4. Because

I(0) = 0, I
(π

4

)

=
1

40
, and lim

θ→π/2−
I(θ) = 0,

it follows that I has an absolute maximum when θ = π/4. If h is the height of the lamp,
then

tan θ =
h

20
so h = 20 tan θ.

For maximum illumination on the walk, the height of the lamp should be

h = 20 tan
π

4
= 20 ft .
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53. Because distance is non-negative, minimizing the square of the distance will produce the
same result as minimizing the distance but does not require the use of square roots. Let
D denote the square of the distance between an arbitrary point (x, y) on the graph of
y = e−x/2 and the point (1, 8). Then

D = (x− 1)2 + (y − 8)2 = (x− 1)2 + (e−x/2 − 8)2.

The domain of D is all real numbers, and because D is differentiable everywhere, the
critical numbers of D occur where D′(x) = 0. Now,

D′(x) = 2(x− 1) + 2(e−x/2 − 8) ·
(

−1

2
e−x/2

)

= 2(x− 1)− e−x/2(e−x/2 − 8).

Using the computer algebra system Maple, the only critical number is x ≈ −3.758. As

lim
x→±∞

D(x) = ∞,

it follows that D has an absolute minimum at approximately −3.758. The point

(−3.758, e1.879) ≈ (−3.758, 6.547) on the graph of y = e−x/2 is closest to the point (1, 8).

AP
R©

Practice Problems

1.

Let y denote the height of the rectangle and 2x be the width of the base of the rectangle.

A = wh = 2xy with y = 9− x2

Substituting for y in the area formula yields

A = 2x
(

9− x2
)

= 18x− 2x3
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The domain of this function is the open interval (−3, 3). The function A is differentiable
on the open interval (−3, 3), so the critical numbers occur where A′(x) = 0. Now,

A′(x) = 18− 6x2

Set A′(x) = 18− 6x2 = 0

6(3− x2) = 0

x = ±
√
3

So the base of the rectangle is 2x = 2
√
3 and the height is y = 9−

(√
3
)2

= 9− 3 = 6 .

CHOICE D

3.

For the x-coordinate and the y-coordinate on the Cartesian coordinate system, the width
of the rectangle is 2x and the height is 2y.

A = (2x)(2y) = 4xy

Given 4x2 + y2 = 16

y2 = 16− 4x2

y = (16− 4x2)
1
2

Substituting into A yields

A = 4x
(

16− 4x2
)

1
2

A′ = 4

[

1
(

16− 4x2
)

1
2 +

1

2

(

16− 4x2
)

−1
2 (−8x)(x)

]

= 4





(

16− 4x2
)

1
2 − 4x2

(16− 4x2)
1
2




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Let A′ = 0

4





(

16− 4x2
)

1
2 − 4x2

(16− 4x2)
1
2



 = 0

16− 4x2 − 4x2 = 0

16− 8x2 = 0

8x2 = 16

x2 = 2

x =
√
2

y =

√

16− 4
(√

2
)2

=
√
16− 8

=
√
8

= 2
√
2

A = 4xy = 4
(√

2
)(

2
√
2
)

= 16 .

CHOICE D

5. The minimum distance between (1, 0) and (x − 1)y = 4 is to be determined by using the
distance formula between (1, 0) and a point on (x− 1)y = 4.

D =

√

(x− 1)
2
+ (y − 0)

2
=

√

(x− 1)
2
+ (y)

2

Substituting y = 4
x−1 yields

D =

√

(x− 1)
2
+

(

4

x− 1

)2

D2 = (x− 1)
2
+

(

4

x− 1

)2

= (x− 1)2 + 16(x− 1)−2

2DD′ = 2(x− 1) + 16(−2)(x− 1)−3

Let 2DD′ = 0

2x− 2− 32

(x− 1)
3 = 0

2(x− 1)4 − 32 = 0

(x− 1)4 = 16

x− 1 = 2

x = 3

y =
4

x− 1
=

4

3− 1
= 2

The point on the graph of (x− 1)y = 4 closest to (1, 0) is (3, 2) .

CHOICE C
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4.8 Antiderivatives; Differential Equations

Concepts and Vocabulary

1. A function F is called an antiderivative of a function f if F ′ = f .

3. All the antiderivatives of y = x−1 are ln |x|+ C, where C is a constant .

5. False . The general solution of a differential equation
dy

dx
= f(x) consists of all the an-

tiderivatives
of f(x).

7. True . To find a particular solution of a differential equation
dy

dy
= f(x), we need a

boundary condition.

Skill Building

9. All antiderivatives of the function f(x) = 2 are F (x) = 2x+ C , where C is a constant.

11. Using the Constant Multiple Rule, all antiderivatives of the function f(x) = 4x5 are

F (x) = 4 · x
5+1

5 + 1
+ C =

2

3
x6 + C ,

where C is a constant.

13. Using the Constant Multiple Rule, all antiderivatives of the function f(x) = 5x3/2 are

F (x) = 5 · x
3/2+1

3/2 + 1
+ C = 2x5/2 + C ,

where C is a constant.
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15. Using the Constant Multiple Rule, all antiderivatives of the function f(x) = 2x−2 are

F (x) = 2 · x
−2+1

−2 + 1
+ C = −2x−1 + C = − 2

x
+ C ,

where C is a constant.

17. All antiderivatives of the function f(x) =
√
x = x1/2 are

F (x) =
x1/2+1

1/2 + 1
+ C =

2

3
x3/2 + C ,

where C is a constant.

19. Using the Sum Rule and the Constant Multiple Rule, all antiderivatives of the function
f(x) = 4x3 − 3x2 + 1 are

F (x) = 4 · x
3+1

3 + 1
− 3 · x

2+1

2 + 1
+ x+ C = x4 − x3 + x+ C ,

where C is a constant.

21. Expand
(2− 3x)2 as 9x2 − 12x+ 4.

Then, using the Sum Rule and the Constant Multiple Rule, all antiderivatives of the func-
tion
f(x) = (2− 3x)2 = 9x2 − 12x+ 4 are

F (x) = 9 · x
2+1

2 + 1
− 12 · x

1+1

1 + 1
+ 4x+ C = 3x3 − 6x2 + 4x+ C ,

where C is a constant.

23. Rewrite
3x− 2

x
as

3x

x
− 2

x
= 3− 2

x
= 3− 2x−1.

Then, using the Sum Rule and the Constant Multiple Rule, all antiderivatives of the func-
tion

f(x) =
3x− 2

x
= 3− 2x−1 are

F (x) = 3x− 2 ln |x|+ C ,

where C is a constant.

25. Rewrite

f(x) =
3x1/2 − 4

x
as

3x1/2

x
− 4

x
= 3x−1/2 − 4x−1.

Then, using the Sum Rule and the Constant Multiple Rule, all antiderivatives of the
function

f(x) =
3x1/2 − 4

x
= 3x−1/2 − 4x−1 are

F (x) =
3x−1/2+1

−1/2 + 1
− 4 ln |x| = 6x1/2 − 4 ln |x|+ C ,

where C is a constant.
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27. Using the Sum Rule and the Constant Multiple Rule, all antiderivatives of the function
f(x) = 2x− 3 cosx are

F (x) = 2 · x
1+1

1 + 1
− 3 · sinx+ C = x2 − 3 sinx+ C ,

where C is a constant.

29. Using the Sum Rule and the Constant Multiple Rule, all antiderivatives of the function
f(x) = 4ex + x are

F (x) = 4 · ex +
x1+1

1 + 1
+ C = 4ex +

1

2
x2 + C ,

where C is a constant.

31. Using the Constant Multiple Rule, all antiderivatives of the function f(x) =
7

1 + x2
are

F (x) = 7 · tan−1 x+ C = 7 tan−1 x+ C ,

where C is a constant.

33. Using the Sum Rule, all antiderivatives of the function f(x) = ex +
1

x
√
x2 − 1

are

F (x) = ex + sec−1 x+ C ,

where C is a constant.

35. Using the Constant Multiple Rule, all antiderivatives of the function f(x) = 3 sinhx are

F (x) = 3 coshx+ C ,

where C is a constant.

37. The general solution of the differential equation
dy

dx
= 3x2 − 2x+ 1 is

y = 3 · x
2+1

2 + 1
− 2 · x

1+1

1 + 1
+ x+ C = x3 − x2 + x+ C,

where C is a constant. Applying the boundary condition that when x = 2, then y = 1
yields

1 = 23 − 22 + 2 + C = 6 + C,

so that C = −5. The particular solution of the differential equation with the boundary
condition that when x = 2, then y = 1, is therefore

y = x3 − x2 + x− 5 .

39. The general solution of the differential equation

dy

dx
= x1/3 + x

√
x− 2 = x1/3 + x3/2 − 2

is

y =
x1/3+1

1/3 + 1
+
x3/2+1

3/2 + 1
− 2x+ C =

3

4
x4/3 +

2

5
x5/2 − 2x+ C,
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where C is a constant. Applying the boundary condition that when x = 1, then y = 2
yields

2 =
3

4
14/3 +

2

5
15/2 − 2(1) + C =

3

4
+

2

5
− 2 + C = −17

20
+ C,

so that C =
57

20
. The particular solution of the differential equation with the boundary

condition that when x = 1, then y = 2, is therefore

y =
3

4
x4/3 +

2

5
x5/2 − 2x+

57

20
.

41. The general solution of the differential equation

ds

dt
= t3 +

1

t2
= t3 + t−2

is

s =
t3+1

3 + 1
+

t−2+1

−2 + 1
+ C =

1

4
t4 − t−1 + C =

1

4
t4 − 1

t
+ C,

where C is a constant. Applying the boundary condition that when t = 1, then s = 2
yields

2 =
1

4
14 − 1

1
+ C =

1

4
− 1 + C = −3

4
+ C,

so that C =
11

4
. The particular solution of the differential equation with the boundary

condition that when t = 1, then s = 2, is therefore

s =
1

4
t4 − 1

t
+

11

4
.

43. The general solution of the differential equation f ′(x) = x− 2 sinx is

f(x) =
x1+1

1 + 1
− 2 · (− cosx) + C =

1

2
x2 + 2 cosx+ C,

where C is a constant. Applying the boundary condition that when x = π, then f(π) = 0
yields

0 =
1

2
π2 + 2 cosπ + C =

1

2
π2 − 2 + C,

so that C = 2− 1

2
π2. The particular solution of the differential equation with the boundary

condition that when x = π, then f(π) = 0, is therefore

f(x) =
1

2
x2 + 2 cosx+ 2− 1

2
π2 .

45. All the antiderivatives of
d2y

dx2
= ex are

dy

dx
= ex + C1,

and all the antiderivatives of
dy

dx
= ex + C1 are

y = ex + C1x+ C2,
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where C1 and C2 are constants. Applying the boundary condition that when x = 0, then
y = 2 yields

2 = e0 + C1(0) + C2 = 1 + C2,

so that C2 = 1. Next, applying the boundary condition that when x = 1, then y = e yields

e = e1 + C1(1) + 1 = e+ 1 + C1,

so that C1 = −1. The particular solution of the differential equation with the given
boundary conditions is therefore

y = ex − x+ 1 .

47. The general solution of the differential equation
dv

dt
= a(t) = −32 is

v(t) = −32t+ C1,

where C1 is a constant. Applying the initial condition v(0) = 128 yields

128 = −32(0) + C1 = C1,

so that v(t) = −32t + 128. Next, the general solution of the differential equation
ds

dt
=

v(t) = −32t+ 128 is

s(t) = −32 · t
1+1

1 + 1
+ 128t+ C2 = −16t2 + 128t+ C2.

Applying the initial condition s(0) = 0 yields

0 = −16(0)2 + 128(0) + C2 = C2,

so that s(t) = −16t2 + 128t .

49. The general solution of the differential equation
dv

dt
= a(t) = 3t is

v(t) = 3 · t
1+1

1 + 1
+ C1 =

3

2
t2 + C1,

where C1 is a constant. Applying the initial condition v(0) = 18 yields

18 =
3

2
02 + C1 = C1,

so that v(t) =
3

2
t2+18. Next, the general solution of the differential equation

ds

dt
= v(t) =

3

2
t2 + 18 is

s(t) =
3

2
· t

2+1

2 + 1
+ 18t+ C2 =

1

2
t3 + 18t+ C2.

Applying the initial condition s(0) = 2 yields

2 =
1

2
(0)3 + 18(0) + C2 = C2,

so that s(t) =
1

2
t3 + 18t+ 2 .
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51. The general solution of the differential equation
dv

dt
= a(t) = sin t ft/s

2
is

v(t) = −cos t+ C1 ft/s,

where C1 is a constant. Applying the initial condition v(0) = 5 ft/s yields

5 ft/s = −cos (0) + C1 = −1 + C1,

so that C1 = 5 + 1 = 6 ft/s and v(t) = −cos t + 6 ft/s. Next, the general solution of the

differential equation
ds

dt
= v(t) = −cos t+ 6 ft/s is

s(t) = −sin t+ 6t+ C2 ft.

Applying the initial condition s(0) = 0 ft yields

0 ft = −sin (0) + 6(0) + C2 = C2,

so that C2 = 0 ft and s(t) = −sin t+ 6t ft .

Applications and Extensions

53. Because u2 + 10u+ 21 = (u+ 3)(u+ 7) and 3u+ 9 = 3(u+ 3),

f(u) =
u2 + 10u+ 21

3u+ 9
=

(u + 3)(u+ 7)

3(u+ 3)
=
u+ 7

3
=

1

3
u+

7

3
,

for u 6= −3. Then, for u 6= −3, all of the antiderivatives of f are

F (u) =
1

3
· u

2

2
+

7

3
u+ C =

1

6
u2 +

7

3
u+ C ,

where C is a constant.

55. Write
t4 + 3t− 1

t
as

t4

t
+

3t

t
− 1

t
= t3 + 3− 1

t
.

The general solution of the differential equation

f ′(t) =
t4 + 3t− 1

t
= t3 + 3− 1

t

is then

f(t) =
1

4
t4 + 3t− ln |t|+ C,

where C is a constant. Applying the boundary condition that when t = 1, then f(1) =
1

4
yields

1

4
=

1

4
14 + 3(1)− ln 1 + C =

13

4
+ C,

so that C = −3. The particular solution of the differential equation with the given bound-
ary condition is therefore

f(t) =
1

4
t4 + 3t− ln |t| − 3 .
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57. Given
d

dx
(x cos x+ sinx) = −x sinx+ 2 cosx,

it follows that x cosx + sinx is an antiderivative of the function −x sinx + 2 cosx. The
general solution of the differential equation

dF

dx
= −x sinx+ 2 cosx

is F (x) = x cosx + sinx + C, where C is a constant. Applying the boundary condition
that when x = 0, then F (0) = 1 yields

1 = 0 · cos 0 + sin 0 + C = C.

The particular solution of the differential equation with the given boundary condition is
therefore

F (x) = x cosx+ sinx+ 1 .

59. Let t = 0 denote the time the brakes are applied, let v0 denote the speed of the car when
the brakes are applied, and let s(t) represent the distance the car has traveled t seconds
after the brakes have been applied. Because the car decelerates at the rate of 10 m/s2, its
acceleration a is given by

a(t) =
dv

dt
= −10.

Solve this differential equation for v(t) to obtain v(t) = −10t+C1, where C1 is a constant.
Applying the initial condition v(0) = v0 yields

v0 = −10(0) + C1 = C1,

so that C1 = v0 and v(t) = −10t+ v0. Next, solve the differential equation

ds

dt
= v(t) = −10t+ v0

to obtain

s(t) = −10 · t
2

2
+ v0t+ C2 = −5t2 + v0t+ C2,

where C2 is a constant. Applying the initial condition s(0) = 0 gives

0 = −5(0)2 + v0(0) + C2 = C2,

so that C2 = 0 and s(t) = −5t2 + v0t. Now, the car comes to a stop when its speed is
equal to zero; that is when

−10t+ v0 = 0 or t =
v0
10
.

By the time the car comes to rest, it has traveled

s
( v0
10

)

= −5
(v0
10

)2

+ v0 ·
v0
10

=
v20
20

meters

from the moment the brakes were applied. If the car is to stop within 15 meters, then

s
( v0
10

)

≤ 15 or
v20
20

≤ 15.

The maximum possible velocity for the car is therefore v0 = 10
√
3 m/s ≈ 17.32 m/s . In

miles per hour, this is approximately

10
√
3 m/s · 3600 s

1 h
· 1 km

1000 m
· 1 mi

1.60934 km
≈ 38.74 mi/h .
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61. Let t = 0 denote the time that the car begins to accelerate, and let s(t) represent the
distance the car has traveled after t seconds. Because the car accelerates at a constant rate
from 0 to 60 mph in 5 s, its acceleration a is given by

a =
60 mph

5 s
· 5280 ft

1 mi
· 1 h

3600 s
= 17.6 ft/s2.

Solve the differential equation
dv

dt
= a(t) = 17.6

for v(t) to obtain v(t) = 17.6t+ C1, where C1 is a constant. Apply the initial condition
v(0) = 0 to determine

0 = 17.6(0) + C1 = C1,

so that v(t) = 17.6t. Next, solve the differential equation

ds

dt
= v(t) = 17.6t

for s(t) to obtain

s(t) = 17.6 · t
2

2
+ C2 = 8.8t2 + C2.

The initial condition s(0) = 0 determines

0 = 8.8(0)2 + C2 = C2,

so s(t) = 8.8t2. Therefore, after 5 seconds, the car has traveled

s(5) = 8.8(5)2 = 220 ft .

63. Let v0 denote the initial upward velocity of the ball, let t = 0 denote the time at which the
ball is released, and let v(t) and s(t) represent the upward speed of the ball and the height
of the ball above ground level, respectively, t seconds after release. Given that the ball is
released at an initial height of 1 m, it follows that s(0) = 1. Now, solve the differential
equation

dv

dt
= a(t) = −9.8

to obtain v(t) = −9.8t + C1, where C1 is a constant. The initial condition v(0) = v0
determines

v0 = −9.8(0) + C1 = C1,

so v(t) = −9.8t+ v0. Next, solve the differential equation

ds

dt
= v(t) = −9.8t+ v0

for s(t) to obtain

s(t) = −9.8
t2

2
+ v0t+ C2 = −4.9t2 + v0t+ C2.

Use the initial condition s(0) = 1 to determine

1 = −4.9(0)2 + v0(0) + C2 = C2,

so s(t) = −4.9t2 + v0t + 1. The ball reaches it maximum height when v(t) = 0; that is,
when

−9.8t+ v0 = 0 or t =
v0
9.8

s.
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The maximum height is therefore

s
( v0
9.8

)

= −4.9
( v0
9.8

)2

+ v0

( v0
9.8

)

+ 1 =
v20
19.6

+ 1 m.

To achieve a maximum height of at least 9.8 m requires

v20
19.6

+ 1 ≥ 9.8 or v0 ≥
√

19.6(8.8) ≈ 13.133 m/s .

65. Note that constant force implies constant acceleration. Given that the object is initially
at rest and has a velocity of 12 m/s after 6 s, the acceleration a of the object is

a =
12− 0

6
= 2 m/s2.

By Newton’s Second Law, F = ma, so the force applied to the object is

F = ma = 4(2) = 8 N .

67. Let a = g sin 20◦ = 9.8 sin20◦. The general solution of the differential equation

dv

dt
= a = 9.8 sin 20◦

is
v(t) = (9.8 sin 20◦)t+ C,

where C is a constant. The initial condition v(0) = 0 (the skier starts from rest) determines

0 = 9.8 sin20◦(0) + C = C,

so
v(t) = (9.8 sin 20◦)t.

After 5 seconds,

v(5) = 9.8 sin 20◦(5) ≈ 16.759 m/s .

69. First consider Javier Sotomayor jumping on Earth. Let t = 0 denote the time Sotomayor
loses contact with the ground, let v0 denote his initial upward speed, and let s(t) represent
his height t seconds after initiating the jump. The general solution of the differential
equation

dv

dt
= a(t) = −9.8

is v(t) = −9.8t + C1, where C1 is a constant. Applying the initial condition v(0) = v0
yields

v0 = −9.8(0) + C1 = C1,

so that C1 = v0 and v(t) = −9.8t+ v0. Next, solve the differential equation

ds

dt
= v(t) = −9.8t+ v0

to obtain

s(t) = −9.8 · t
2

2
+ v0t+ C2 = −4.9t2 + v0t+ C2,

where C2 is a constant. Applying the initial condition s(0) = 0 gives

0 = −4.9(0)2 + v0(0) + C2 = C2,
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so that C2 = 0 and s(t) = −4.9t2 + v0t. Now, Sotomayor achieves his maximum height
when v(t) is equal to zero; that is when

−9.8t+ v0 = 0 or t =
v0
9.8

.

Substituting this time into s(t) and setting the resulting expression equal to 2.45 gives

2.45 = − v20
19.6

+
v20
9.8

=
v20
19.6

,

so that
v0 =

√
48.02 m/s.

Now, consider Javier Sotomayor jumping on the moon. Assume the condition that “he
propels himself with the same force on the moon as on Earth” means that Sotomayor
produces the same initial velocity, v0 =

√
48.02 m/s, as on Earth. Following the procedure

used above, with an acceleration due to gravity on the moon of 1.6 m/s2, Sotomayor’s
velocity during the jump on the moon is

v(t) = −1.6t+
√
48.02,

so that he achieves maximum height when

−1.6t+
√
48.02 = 0 or t =

√
48.02

1.6
s.

Sotomayor’s height t seconds after initiating the jump is

s(t) = −1.6
t2

2
+
√
48.02t = −0.8t2 +

√
48.02t,

so

s

(√
48.02

1.6

)

= −48.02

3.2
+

48.02

1.6
=

48.02

3.2
= 15.00625 m .

On the moon, Sotomayor would attain a height of a little more than 15 m.

71. Divide 2x3 + 2x+ 3 by 1 + x2 to find the quotient and remainder and rewrite

2x3 + 2x+ 3

1 + x2
= 2x+

3

1 + x2
.

Then, using the Sum Rule and the Constant Multiple Rule, the antiderivative is

x2 + 3 tan−1 x+ C ,

where C is a constant.

Challenge Problems

73. (a) Let I(x) denote the intensity of the radiation at the depth x into the tissue. The
rate of change of the intensity of the radiation with respect to the depth x is then
dI

dx
. Given that intensity of the radiation decreases with increasing depth (because

radiation is absorbed as it passes through the tissue) and that the rate of change is
proportional to the intensity with positive constant of proportionality k, it follows
that

dI

dx
= −kI.
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(b) Because the constant of proportionality k has been designated to be positive, the
negative sign is needed in the differential equation in part (a) to ensure that the

intensity of the radiation decreases with increasing depth .

(c) To solve the differential equation from part (a), we need to find the most general
function whose derivative is −k times itself. Note that e−kx is one such function
whose derivative is −k times itself; that is

d

dx
e−kx = e−kx · (−k) = −ke−kx.

Now, suppose that f is any function for which f ′(x) = −kf(x) and consider the
function f(x)ekx. Because

d

dx
[f(x)ekx] = f(x) · kekx + ekx · f ′(x) = kf(x)ekx − kf(x)ekx = 0,

it follows that f(x)ekx is equal to some constant C. In other words, if f is a function
for which f ′(x) = −kf(x), then f(x) = Ce−kx for some constant C. It follows that

I(x) = Ce−kx

for some constant C. Applying the initial condition I(0) = I0 yields

I0 = Ce−k(0) = C;

therefore, I(x) = I0e
−kx .

(d) If the intensity is reduced by 90% at the depth of 2.0 cm, then I(2.0) = 0.1I0. Using
the formula for I(x) from part (c),

0.1I0 = I0e
−2k so that k = −1

2
ln 0.1 cm−1 .

AP
R©

Practice Problems

1. s′(t) = v(t) = t2 + t

so s(t) =
t3

3
+
t2

2
+ C

s(0) =
(0)

3

3
+

(0)
2

2
+ C = −1

C = −1

s(t) =
t3

3
+
t2

2
− 1

s(3) =
(3)

3

3
+

(3)
2

2
− 1 =

25

2

CHOICE C

3. f(x) = 2x− cosx

F ′(x) = f(x), where F (x) is the antiderivative

F ′(x) = 2x− cosx

so y = F (x) = x2 − sinx+ C

CHOICE C
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5. v′(t) = a(t) = 2 + 12t

so v(t) = 2t+ 6t2 + C1

v(0) = 2(0) + 6(0)2 + C1 = 5

C1 = 5

v(t) = 6t2 + 2t+ 5

s′(t) = v(t) = 6t2 + 2t+ 5

so s(t) = 2t3 + t2 + 5t+ C2

s(3) = 2(3)
3
+ (3)

2
+ 5(3) + C2 = 78 + C2

s(1) = 2(1)3 + (1)2 + 5(1) + C2 = 8 + C2

s(3)− s(1) = (78 + C2)− (8 + C2) = 70

CHOICE B

Chapter 4 Review Exercises

1. The volume and surface area of a sphere of radius r are

V =
4

3
πr3 and S = 4πr2,

respectively. Differentiating with respect to time,

dV

dt
= 4πr2

dr

dt
and

dS

dt
= 8πr

dr

dt
.

Solving the first equation for
dr

dt
and substituting into the second equation yields

dS

dt
=

8πr

4πr2
dV

dt
=

2

r

dV

dt
.

Given that the snowball is melting at the rate of 2 cm3/min,

dV

dt
= −2.

When r = 5 cm,

dS

dt
=

2

5
(−2) = −4

5
cm2/min .

3. Let x(t) denote the distance between the plane approaching the airport from the west and
the airport, and let y(t) denote the distance between the plane approaching the airport
from the north and the airport. The distance D between the two planes is then

D =
√

x2 + y2.

Differentiating with respect to time yields

dD

dt
=
x · dx

dt + y · dy
dt

√

x2 + y2
.

Given that the plane to the west is approaching the airport at 200 mph and the plane to
the north is approaching the airport at 250 mph,

dx

dt
= −200 and

dy

dt
= −250.
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When x = 20 miles and y = 30 miles,

dD

dt
=

20 · −200 + 30 · −250√
202 + 302

=
−11500√

1300
≈ −318.953 mph.

The two planes are approaching one another at approximately 318.953 mph .

5. For the function given in the graph,

(−8,−9): absolute minimum

(−5, 0): neither

(−2, 9): local maximum and absolute maximum

(1, 0): local minimum

(3, 4): local maximum

(5, 0): neither

7. Let f(x) = cos(2x) and consider the closed interval [0, π]. Because the trigonometric
function f is differentiable everywhere, the critical numbers of f occur where f ′(x) = 0.
Now,

f ′(x) = −2 sin(2x),

so f ′(x) = 0 when 2x = nπ for any integer n. It follows that x =
nπ

2
is a critical number

for any integer n. Among these numbers, only 0,
π

2
, and π lie on the closed interval [0, π].

Therefore, 0,
π

2
, and π are the critical numbers of f on the closed interval [0, π].

9. Let f(x) =
3

2
x4 − 2x3 − 6x2 + 5, and consider the closed interval [−2, 3]. Because f

is continuous on this closed interval, the Extreme Value Theorem guarantees that f has
an absolute maximum and an absolute minimum on [−2, 3]. The absolute maximum and
absolute minimum can only occur at the endpoints of the interval or at the critical numbers
inside the interval. Now, the polynomial function f is differentiable everywhere, which
means that the critical numbers of f occur where f ′(x) = 0. Moreover,

f ′(x) = 6x3 − 6x2 − 12x = 6x(x2 − x− 2) = 6x(x − 2)(x+ 1) = 0

when x = −1, x = 0, and x = 2. Evaluating f at the endpoints of the interval [−2, 3] and
at the three critical numbers yields

f(−2) = 21, f(−1) =
5

2
, f(0) = 5, f(2) = −11, f(3) =

37

2
.

Therefore, the absolute maximum value of f on the interval [−2, 3] is 21 (and this occurs

at the endpoint x = −2), while the aboslute minimum value of f is −11 (and this occurs

at the critical number x = 2).

11. Let f(x) =
2x− 1

x
= 2 − 1

x
. The function f is continuous and differentiable on the set

{x|x 6= 0}, so it is continuous on the closed interval [1, 4] and differentiable on the open
interval (1, 4). The function f therefore satisfies the conditions of the Mean Value Theorem
on the interval [1, 4]. Now,

f ′(x) =
1

x2
and

f(b)− f(a)

b− a
=
f(4)− f(1)

4− 1
=

7
4 − 1

3
=

1

4
,
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so

f ′(c) =
f(b)− f(a)

b− a
when

1

c2
=

1

4
.

Therefore, c = ±2. Of these numbers, only c = 2 is in the interval (1, 4). Finally, at the

point

(

2,
3

2

)

, the graph of f has a tangent line with a slope equal to that of the secant

line joining (1, 1) and

(

4,
7

4

)

.

13. Let f(x) = x3 − x2 − 8x + 1. The polynomial function f is differentiable everywhere, so
critical numbers occur where f ′(x) = 0. Now,

f ′(x) = 3x2 − 2x− 8 = (3x+ 4)(x− 2),

so 2 and −4

3
are the critical numbers of f .

(a) To determine where f ′(x) > 0 and f ′(x) < 0, use the numbers 2 and −4

3
to divide

the number line into three intervals. The sign of f ′(x) is then determined on each
interval, as shown in the following table.

Sign of Sign of Sign of
Interval 3x+ 4 x− 2 f ′(x) Conclusion
(

−∞,− 4
3

)

− − + f is increasing
(

− 4
3 , 2
)

+ − − f is decreasing
(2,∞) + + + f is increasing

Therefore, f is increasing on the intervals

(

−∞,−4

3

)

and (2,∞) and decreasing on

the interval

(

−4

3
, 2

)

. By the First Derivative Test, it follows that f has a local maxi-

mum value at−4

3
and a local minimum value at 2. The local maximum value is f

(

−4

3

)

=
203

27
,

and the local minimum value is f(2) = −11 .

(b) The second derivative of f is
f ′′(x) = 6x− 2.

Evaluating the second derivative at the critical numbers yields

f ′′
(

−4

3

)

= −10 < 0 and f ′′(2) = 10 > 0.

By the Second Derivative Test, it follows that f has a local maximum value at −4

3
and

a local minimum value at 2. The local maximum value is f

(

−4

3

)

=
203

27
, and the

local minimum value is f(2) = −11 .

15. Let f(x) = x4e−2x. The function f is differentiable everywhere, so critical numbers occur
where f ′(x) = 0. Now,

f ′(x) = x4 · −2e−2x + 4x3e−2x = (4x3 − 2x4)e−2x = 2x3(2− x)e−2x,

so 0 and 2 are the critical numbers of f
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(a) To determine where f ′(x) > 0 and f ′(x) < 0, use the numbers 0 and 2 to divide
the number line into three intervals. The sign of f ′(x) is then determined on each
interval, as shown in the following table.

Sign of Sign of Sign of
Interval 2x3 (2 − x)e−2x f ′(x) Conclusion

(−∞, 0) − + − f is decreasing
(0, 2) + + + f is increasing
(2,∞) + − − f is decreasing

Therefore, f is decreasing on the intervals (−∞, 0) and (2,∞) and increasing on the
interval (0, 2). By the First Derivative Test, it follows that f has a local minimum

value at 0 and a local maximum value at 2. The local minimum value is f(0) = 0 ,

and the local maximum value is f(2) = 16e−4 .

(b) The second derivative of f is

f ′′(x) = −2(4x3 − 2x4)e−2x + (12x2 − 8x3)e−2x = (4x4 − 16x3 + 12x2)e−2x.

Evaluating the second derivative at the critical numbers yields

f ′′(0) = 0 and f ′′(2) = −16e−4 < 0.

By the Second Derivative Test, it follows that f has a local maximum value at 2; the

local maximum value is f(2) = 16e−4 . The Second Derivative Test is inconclusive

at 0.

17. Let y = f(x) = −x3 − x2 + 2x.

Step 1 The polynomial function f has a domain of all real numbers . f(0) = 0, so the

y-intercept is 0 . To find the x-intercepts, solve the equation f(x) = 0. Because

−x3 − x2 + 2x = −x(x2 + x− 2) = −x(x − 1)(x+ 2),

it follows the graph of f has three x-intercepts: −2, 0, and 1 .

Step 2 The graphs of polynomial functions do not have asymptotes , but the end behavior

of the graph of f will resemble the power function y = −x3.
Step 3 Now

f ′(x) = −3x2 − 2x+ 2; and

f ′′(x) = −6x− 2 = −2(3x+ 1).

The critical numbers of the polynomial function f occur where f ′(x) = 0, so

x =
2±

√

(−2)2 − 4(−3)(2)

−6
=

2± 2
√
7

−6
= −1

3
± 1

3

√
7

are the critical numbers. At the points
(

−1

3
− 1

3

√
7,−20

27
− 14

27

√
7

)

≈ (−1.215,−2.113)

and
(

−1

3
+

1

3

√
7,−20

27
+

14

27

√
7

)

≈ (0.549, 0.631),

the tangent lines are horizontal.
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Step 4 To apply the Increasing/Decreasing Function Test, use the critical numbers −1

3
± 1

3

√
7

to divide the number line into three intervals.

Interval Sign of f ′ Conclusion

(−∞,− 1
3 − 1

3

√
7) − f is decreasing on (−∞,− 1

3 − 1
3

√
7)

(− 1
3 − 1

3

√
7,− 1

3 + 1
3

√
7) + f is increasing on (− 1

3 − 1
3

√
7,− 1

3 + 1
3

√
7)

(− 1
3 + 1

3

√
7,∞) − f is decreasing on (− 1

3 + 1
3

√
7,∞)

Step 5 By the First Derivative Test and the information in the table above, f has a local

minimum value at −1

3
− 1

3

√
7 and a local maximum value at −1

3
+

1

3

√
7. The

local minimum value is f

(

−1

3
− 1

3

√
7

)

= −20

27
− 14

27

√
7 ,

while the

local maximum value is f

(

−1

3
+

1

3

√
7

)

= −20

27
+

14

27

√
7 .

Step 6 The second derivative is equal to zero at x = −1

3
. Use this number to divide the

number line into two intervals, and determine the sign of f ′′ on each interval.

Interval Sign of f ′′ Conclusion

(−∞,− 1
3 ) + f is concave up on (−∞,− 1

3 )
(− 1

3 ,∞) − f is concave down on (− 1
3 ,∞)

The concavity of f changes at −1

3
, so the point

(

−1

3
,−20

27

)

is a point of inflection.

Step 7 The figure below displays the graph of f . Local extreme values are highlighted by
closed circles, and the point of inflection is highlighted by a closed square.

-4 -3 -2 -1 1 2 3

-20

-10

10

20

(–2, 0)
(0, 0)

(1, 0)

(–1/3, –20/27)

(–1.215, –2.113)

(0.549, 0.631)

19. Let y = f(x) = xex.

Step 1 The domain of f is the set of all real numbers . The x-intercept is 0 , and the

y-intercept is f(0) = 0 .
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Step 2 Because the domain of f is the set of all real numbers, the graph of f has no vertical asymptotes .

To determine if there is a horizontal asymptote, consider the limits at infinity and at
negative infinity:

lim
x→−∞

xex = lim
x→−∞

x

e−x
= lim

x→−∞

1

−e−x
= 0

and
lim
x→∞

xex = ∞,

where L’Hôpital’s Rule was used in the first limit. Therefore, the graph of f has the

line y = 0 as a horizontal asymptote as x → −∞ and no horizontal asymptote as
x→ ∞.

Step 3 Now,

f ′(x) = xex + ex = ex(x+ 1); and

f ′′(x) = ex + ex(x+ 1) = ex(x + 2).

The function f is differentiable everywhere, so the critical numbers of f occur where

f ′(x) = 0, which is when x = −1 . At the point

(

−1,−1

e

)

, the tangent line is

horizontal.

Step 4 To apply the Increasing/Decreasing Function Test, use the number −1 to divide the
number line into two intervals.

Interval Sign of f ′ Conclusion

(−∞,−1) − f is decreasing on (−∞,−1)
(−1,∞) + f is increasing on (−1,∞)

Step 5 By the First Derivative Test and the information in the table above, f has a local

minimum value at −1. The local minimum value is f(−1) = −1

e
.

Step 6 The second derivative exists everywhere and is equal to zero when x = −2. Use this
number to divide the number line into two intervals, and determine the sign of f ′′ on
each interval.

Interval Sign of f ′′ Conclusion

(−∞,−2) − f is concave down on (−∞,−2)
(−2,∞) + f is concave up on (−2,∞)

The concavity of f changes at −2, so the point

(

−2,− 2

e2

)

is a point of inflection.

Step 7 The figure below displays the graph of f . The local extreme value is highlighted by a
closed circle, and the point of inflection is highlighted by a closed square.
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-5 -4 -3 -2 -1 1 2

1

2

3

4

5

(0, 0)

(–1, –1/e)
(–2, –2/e2

)

21. Let y = f(x) = x
√
x− 3.

Step 1 The domain of f is given by the solution to the inequality x − 3 ≥ 0, that is, the set

{x|x ≥ 3} . The x-intercept is 3 , and there is no y-intercept because 0 is not in

the domain of f .

Step 2 Because
lim
x→∞

x
√
x− 3 = ∞,

the graph of f does not have a horizontal asymptote . The graph also

does not have any vertical asymptotes .

Step 3 Now,

f ′(x) =
d

dx
(x
√
x− 3) = x · 1

2
√
x− 3

+
√
x− 3 =

3x− 6

2
√
x− 3

; and

f ′′(x) =
d

dx

(

3x− 6

2
√
x− 3

)

=
2
√
x− 3 · 3− (3x− 6) · (x− 3)−1/2

4(x− 3)

=
6(x− 3)− (3x− 6)

4(x− 3)3/2
=

3x− 12

4(x− 3)3/2
.

The critical numbers of f occur where f ′(x) = 0 and where f ′(x) does not exist. f ′(x)
is equal to 0 when x = 2 and does not exist when x = 3; however, 2 is not in the

domain of f , so 2 is not a critical number. Therefore, 3 is the only critical number
of f . At the point (3, 0), the tangent line is vertical.

Step 4 Because f ′(x) > 0 for all x > 3, f is increasing on the interval (3,∞) .

Step 5 Because the only critical number of f is an endpoint of the domain of f , f has

no local extreme values .

Step 6 The second derivative exists for x > 3 and is equal to zero when x = 4. Use this
number to divide the number line into two intervals, and determine the sign of f ′′ on
each interval.

Interval Sign of f ′′ Conclusion

(3, 4) − f is concave down on (3, 4)
(4,∞) + f is concave up on (4,∞)

The concavity of f changes at 4, so the point (4, 4) is a point of inflection.
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Step 7 The figure below displays the graph of f . The point of inflection is highlighted by a
closed square.

1 2 3 4 5 6

2

4

6

8

10

12

14

(3, 0)

(4, 4)

23. Let f(x) = x4 + 12x2 + 36x− 11. Then

f ′(x) = 4x3 + 24x+ 36; and

f ′′(x) = 12x2 + 24.

(a) Using the computer algebra system Maple, it is found that f ′(x) = 0 for x ≈ −1.207.
For x < −1.207, f ′(x) < 0, while for x > −1.207, f ′(x) > 0. Therefore, f is

decreasing on the approximate interval (−∞,−1.207)

and
increasing on the approximate interval (−1.207,∞) .

(b) Because f ′′(x) ≥ 24 > 0 for all x, f is concave up on the interval (−∞,∞) .

(c) Because the concavity of f does not change, f has no points of inflection .

25. Because y′ > 0 and y′′ < 0 for all x, the graph of y = f(x) is always increasing and concave
down.

(A) This cannot be part of the graph of y = f(x) because this graph segment is concave
up.

(B) This could be part of the graph of y = f(x) because this graph segment is increasing
and concave down.

(C) This cannot be part of the graph of y = f(x) because this graph segment is decreasing.

(D) This cannot be part of the graph of y = f(x) because this graph segment is decreasing.

Therefore, (B) could be a part of the graph of f .

27. Answers will vary. The figure below displays the graph of a function f with the following
properties: f(−2) = 2; f(5) = 1; f(0) = 0; f ′(x) > 0 if x < −2 or 5 < x and f ′(x) < 0
if −2 < x < 2 or 2 < x < 5; f ′′(x) > 0 if x < 0 or 2 < x and f ′′(x) < 0 if 0 < x < 2;
lim

x→2−
f(x) = −∞; lim

x→2+
f(x) = ∞.
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-5 -4 -3 -2 -1 1 2 3 4 5 6 7

-2

-1

1

2

3

4

5

29. Let x denote the side length in inches of the square cut from each corner of the base (see
the diagram below, where all lengths are given in inches). When the sides are turned up,
the resulting box will have a rectangular base measuring 24− 2x inches by 36− 2x inches
and a height of x inches; the volume will therefore be

V = x(24− 2x)(36− 2x) = 4x3 − 120x2 + 864x.

To determine the domain of V , note that the length of each of the three sides of the box
must be non-negative. This requires x ≥ 0, 24 − 2x ≥ 0, and 36 − 2x ≥ 0. The solution
of this set of three inequalities is 0 ≤ x ≤ 12; it follows that the domain of V is the closed
interval [0, 12]. The function V is differentiable on the open interval (0, 12), so the critical
numbers occur where V ′(x) = 0. Now,

V ′(x) = 12x2 − 240x+ 864 = 12(x2 − 20x+ 72),

so the only critical number inside the open interval (0, 12) is

x =
20−

√

202 − 4(1)(72)

2
=

20− 4
√
7

2
= 10− 2

√
7 ≈ 4.708.

Note that

x =
20 +

√

202 − 4(1)(72)

2
=

20 + 4
√
7

2
= 10 + 2

√
7 ≈ 15.292

is not in the domain of V . Evaluating V at the endpoints of the interval [0, 12] and at the
critical number 4.708 yields

V (0) = 0, V (4.708) ≈ 1825.297, and V (12) = 0.

The largest volume is therefore achieved when x = 10− 2
√
7 ≈ 4.708. Squares with a side

length of 10− 2
√
7 ≈ 4.708 inches should be cut out to produce a box with maximum

volume.

36 - 2x

24 - 2x

x

31. All antiderivatives of the function f(x) = 0 are F (x) = C , where C is a constant.
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33. All antiderivatives of the function f(x) = cosx are F (x) = sinx+ C , where C is a
constant.

35. Using the Constant Multiple Rule, all antiderivatives of the function f(x) =
2

x
are

F (x) = 2 · ln |x|+ C = 2 ln |x|+ C ,

where C is a constant.

37. Using the Sum Rule and the Constant Multiple Rule, all antiderivatives of the function
f(x) = 4x3 − 9x2 + 10x− 3 are

F (x) = 4 · x
3+1

3 + 1
− 9 · x

2+1

2 + 1
+ 10 · x

1+1

1 + 1
− 3x+ C = x4 − 3x3 + 5x2 − 3x+ C ,

where C is a constant.

39. Let t = 0 denote the time the box begins to move with a velocity v0, and let v(t) and s(t)
denote the velocity and distance traveled by the box, respectively, t seconds after it begins
to move. The general solution of the differential equation

dv

dt
= a(t) = t2(t− 3) = t3 − 3t

is

v(t) =
t4

4
− 3

t2

2
+ C1 =

1

4
t4 − 3

2
t2 + C1,

where C1 is a constant. The initial condition v(0) = v0 determines

v0 =
1

4
04 − 3

2
02 + C1 = C1.

Next, the general solution of the differential equation

ds

dt
= v(t) =

1

4
t4 − 3

2
t2 + v0

is

s(t) =
1

4
· t

5

5
− 3

2
· t

3

3
+ v0t+ C2 =

1

20
t5 − 1

2
t3 + v0t+ C2,

where C2 is a constant. The initial condition s(0) = 0 determines

0 =
1

20
05 − 1

2
03 + v0(0) + C2 = C2.

The box travels 10 cm in 2 s, so s(2) = 10 and

10 =
1

20
25 − 1

2
23 + 2v0 =

8

5
− 4 + 2v0.

Therefore,

v0 = 7− 4

5
=

31

5
cm/s .

41. Because
lim
x→0

(xe3x − x) = 0 and lim
x→0

[1− cos(2x)] = 0,

the expression
xe3x − x

1− cos(2x)
is an indeterminate form at 0 of the type

0

0
.
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43. Because

lim
x→0

1

x2
= ∞ and lim

x→0

1

x2 secx
= ∞,

the expression
1

x2
− 1

x2 secx
is an indeterminate form at 0 of the type ∞−∞ .

45. Rewrite
sec2 x

sec2(3x)
as

cos2(3x)

cos2 x
.

Because
lim

x→π/2
[cos2(3x)] = 0 and lim

x→π/2
cos2 x = 0,

the expression
cos2(3x)

cos2 x
is an indeterminate form at π/2 of the type

0

0
. Using L’Hôpital’s

Rule,

lim
x→π/2

cos2(3x)

cos2 x
= lim

x→π/2

d
dx cos2(3x)

d
dx cos2 x

= lim
x→π/2

−6 cos(3x) sin(3x)

−2 cosx sinx
= lim

x→π/2

3 sin(6x)

sin(2x)
.

Now,
lim

x→π/2
[3 sin(6x)] = 0 and lim

x→π/2
sin(2x) = 0,

so the expression
3 sin(6x)

sin(2x)
is an indeterminate form at π/2 of the type

0

0
. Using L’Hôpital’s

Rule again,

lim
x→π/2

cos2(3x)

cos2 x
= lim

x→π/2

3 sin(6x)

sin(2x)
= lim

x→π/2

d
dx [3 sin(6x)]

d
dx sin(2x)

= lim
x→π/2

18 cos(6x)

2 cos(2x)
=

18(−1)

2(−1)
= 9.

Therefore,

lim
x→π/2

sec2 x

sec2(3x)
= lim

x→π/2

cos2(3x)

cos2 x
= 9 .

47. Because
lim
x→0

(ex − e−x) = 0 and lim
x→0

sinx = 0,

the expression
ex − e−x

sinx
is an indeterminate form at 0 of the type

0

0
. Using L’Hôpital’s

Rule,

lim
x→0

ex − e−x

sinx
= lim

x→0

d
dx(e

x − e−x)
d
dx sinx

= lim
x→0

ex + e−x

cosx
=

1+ 1

1
= 2 .

49. Because
lim
x→0

(tanx+ secx− 1) = 0 and lim
x→0

(tanx− secx+ 1) = 0,

the expression
tanx+ secx− 1

tanx− secx+ 1
is an indeterminate form at 0 of the type

0

0
. Using

L’Hôpital’s Rule,

lim
x→0

tanx+ secx− 1

tanx− secx+ 1
= lim

x→0

d
dx(tanx+ secx− 1)
d
dx(tanx− secx+ 1)

= lim
x→0

sec2 x+ secx tanx

sec2 x− secx tanx
=

1 + 0

1− 0
= 1 .
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51. Because
lim
x→0

(x− sinx) = 0 and lim
x→0

x3 = 0,

the expression
x− sinx

x3
is an indeterminate form at 0 of the type

0

0
. Using L’Hôpital’s

Rule,

lim
x→0

x− sinx

x3
= lim

x→0

d
dx(x − sinx)

d
dxx

3
= lim

x→0

1− cosx

3x2
.

Now,
lim
x→0

(1− cosx) = 0 and lim
x→0

(3x2) = 0,

so the expression
1− cosx

3x2
is also an indeterminate form at 0 of the type

0

0
. Using

L’Hôpital’s Rule again,

lim
x→0

x− sinx

x3
= lim

x→0

1− cosx

3x2
= lim

x→0

d
dx(1 − cosx)

d
dx(3x

2)
= lim

x→0

sinx

6x
=

1

6
lim
x→0

sinx

x
=

1

6
·1 =

1

6
.

53. Because

lim
x→∞

(1 + 4x) = ∞ and lim
x→∞

2

x
= 0,

the expression (1+4x)2/x is an indeterminate form at∞ of the type∞0. Let y = (1+4x)2/x.
Then

ln y = ln(1 + 4x)2/x =
2

x
ln(1 + 4x) =

2 ln(1 + 4x)

x
,

which is an indeterminate form at ∞ of the type
∞
∞ . Using L’Hôpital’s Rule,

lim
x→∞

ln y = lim
x→∞

2 ln(1 + 4x)

x
= lim

x→∞

d
dx [2 ln(1 + 4x)]

d
dxx

= lim
x→∞

8
1+4x

1
= 0.

Because lim
x→∞

ln y = 0, it follows that

lim
x→∞

y = lim
x→∞

(1 + 4x)2/x = e0 = 1 .

55. Because
lim
x→4

(x2 − 16) = 0 and lim
x→4

(x2 + x− 20) = 0,

the expression
x2 − 16

x2 + x− 20
is an indeterminate form at 0 of the type

0

0
. Using L’Hôpital’s

Rule,

lim
x→4

x2 − 16

x2 + x− 20
= lim

x→4

d
dx(x

2 − 16)
d
dx(x

2 + x− 20)
= lim

x→4

2x

2x+ 1
=

8

9
.

Alternately,

lim
x→4

x2 − 16

x2 + x− 20
= lim

x→4

(x+ 4)(x− 4)

(x− 4)(x+ 5)
= lim

x→4

x+ 4

x+ 5
=

8

9
.

57. The general solution of the differential equation

dy

dx
= ex
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is y = ex + C, where C is a constant. Applying the boundary condition that when x = 0,
then y = 2 yields

2 = e0 + C = 1 + C so that C = 1.

The particular solution of the differential equation with the given boundary condition is

therefore y = ex + 1 .

59. The general solution of the differential equation

dy

dx
=

2

x

is y = 2 ln |x| + C, where C is a constant. Applying the boundary condition that when
x = 1, then y = 4 yields

4 = 2 ln 1 + C = C.

The particular solution of the differential equation with the given boundary condition is

therefore y = 2 ln |x|+ 4 .

61. The cost of producing x items is C(x) = 200+ 35x+0.02x2 and each item can be sold for
$78, so the revenue produced by selling x items is R(x) = 78x. The profit generated by
producing and selling x items is then

P (x) = R(x)− C(x) = 78x− (200 + 35x+ 0.02x2) = −200 + 43x− 0.02x2.

The polynomial function P is differentiable everywhere, so the critical numbers of P occur
where P ′(x) = 0. Now,

P ′(x) = 43− 0.04x,

so x = 1075 is the only critical number. Using the Second Derivative Test,

P ′′(x) = −0.04 < 0

for all x, so P has both a local maximum and an absolute maximum at 1075. Therefore,

1075 items should be produced and sold to maximize profit.

63. Let (x, lnx) be the coordinates of the vertex of the rectangle on the graph of y = lnx with
0 < x < 1. The area A of the rectangle is

A = −x lnx,

where the negative sign is included because lnx < 0 for 0 < x < 1, and

A′(x) = −
(

x · 1
x
+ lnx

)

= −(1 + lnx).

A′(x) exists everywhere on the interval (0, 1) and is equal to zero when x = e−1. Using
the Second Derivative Test,

A′′(x) = − 1

x
so A′′(e−1) = −e < 0,

and A has a local maximum at e−1. Because A′′(x) < 0 for all 0 < x < 1, the local
maximum is also an absolute maximum. Therefore, the area of the largest rectangle in the
fourth quadrant that has three vertices on the coordinate axes and the fourth vertex on
the graph of y = lnx is

A = −e−1 ln e−1 = e−1 =
1

e
.
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AP
R©

Review Problems

1. From the graph of f(x) it appears that for x < 0, f ′(x) < 0; for 0 < x < 1.4, f ′(x) > 0;
and for x > 1.4, f ′(x) < 0. f ′(x) = 0 at x = 0 and x ≈ 1.4.

The only graph of f to satisfy these conditions is graph B .

CHOICE B

3. y(t) = te−t2

y′(t) = e−t2 + t(e−t2(−2t)) = e−t2(1− 2t2)

The object is at rest when y′(t) = 0

y′(t) = e−t2(1− 2t2) = 0

1− 2t2 = 0

t = ±
√
2

2

For the domain of t ≥ 0 the sole value for t is t =
√
2
2 .

CHOICE A

5. The Intermediate Value Theorem as applied to this problem provides that since f is contin-
uous for all real numbers and since 0 is a y-coordinate between f(−4) = 3 and f(1) = −8
there is at least one number c in the domain such that f(c) = 0.

CHOICE C

7. lim
x→∞

x

lnx

Since lim
x→∞

x = ∞ and lim
x→∞

(lnx) = ∞, lim
x→∞

x
ln x is an indeterminate form of the type ∞

∞
and L’Hôpital’s Rule is applicable as follows.

lim
x→∞

x

lnx
= lim

x→∞

1
1
x

= lim
x→∞

x = ∞ .

CHOICE D

9. Consider each choice in turn.

I. With the given information, f could be an even function greater than 2 and f(c) is
not necessarily equal to 0.

II. Rolle’s Theorem, a specific application of the Mean Value Theorem, provides that if f
is a continuous function, as it is here being a polynomial function, and differentiable
on the open interval (a, b) then if f(a) = f(b), then there is at least one number c in
(a, b) such that f ′(c) = 0. So,

f ′(c) = 0 is true.

III. f ′′(c) = 0 is not true as there can be a function f with the specified requirements
without a change of concavity. For instance, for

f(x) = x4 + x2

f ′(x) = 4x3 + 2x

f ′′(x) = 12x2 + 2

there is no c in (a, b) for which f ′′(c) = 12x2 + 2 = 0.

CHOICE B
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11. V = πr2h

h+ 2πr = 300

h = 300− 2πr

V = πr2(300− 2πr)

V = 300πr2 − 2π2r3

V ′ = 600πr − 6π2r2

Let V ′ = 600πr − 6π2r2 = 0

6πr(100− πr) = 0

100− πr = 0

r =
100

π
m

h = 300− 2πr

= 300− 2π

(

100

π

)

h = 100m .

CHOICE B

13. (a) For f , a polynomial function, the critical numbers will be determined at

f ′(x) = 0

For f(x) = x3 + 3x2 + 2

f ′(x) = 3x2 + 6x

Let f ′(x) = 3x2 + 6x = 0

3x(x+ 2) = 0

x = 0 x = −2

The critical numbers for f are both x = 0 and x = −2

(b)

Interval Sign of x Sign of x+ 2 Sign of f ′(x) = 3x2 + 6x Conclusion

(−∞,−2) − − + Increasing
(−2, 0) − + − Decreasing
(0,∞) + + + Increasing

f is increasing on (−∞,−2] ∪ [0,∞)

(c) From the chart in (b) above, the local extreme points occur at x = −2 and x = 0

f(−2) = (−2)
3
+ 3(−2)

2
+ 2 = 6

f(0) = 03 + 3(0)2 + 2 = 2

By the first derivative test, there is a local maximum at (−2, 6) since f changes from

increasing to decreasing from left to right about the critical number, x = −2.

By the first derivative test, there is a local minimum at (0, 2) since f changes from

decreasing to increasing from left to right about the critical number, x = 0.
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(d) For f(x) = x3 + 3x2 + 2

f ′(x) = 3x2 + 6x

f ′′(x) = 6x+ 6

Let f ′′(x) = 6x+ 6 = 0

x = −1

Interval Sign of f ′′(x) Conclusion

(−∞,−1) − Concave Down
(−1,∞) + Concave Up

(e) Referring to the chart in (d) above, there is a Point of Inflection at x = −1 since f
changes concavity, from concave down to concave up, at x = −1.

f(−1) = (−1)
3
+ 3(−1)

2
+ 2 = 4

The point of inflection is at (−1, 4) .

(f) y − 4 = f ′(−1)(x− (−1))

y − 4 = −3(x+ 1)

y − 4 = −3x− 3

y = −3x+ 1 .

15. (a)
d2y

dx2
= 3x2 − 6x

dy

dx
= x3 − 3x2 + C1

y =
x4

4
− x3 + C1x+ C2 .

(b) y =
x4

4
− x3 + C1x+ C2

dy

dx
=

d

dx

(

x4

4

)

− d

dx

(

x3
)

+
d

dx
(C1x) +

d

dx
(C2)

= x3 − 3x2 + C1

d2y

dx2
=

d

dx

(

dy

dx

)

=
d

dx

(

x3
)

− 3
d

dx

(

x2
)

+
d

dx
(C1)

= 3x2 − 6x.

(c) y =
x4

4
− x3 + C1x+ C2

For (0, 2), 2 = C2

For (1, 3), 3 =
14

4
− 13 + C1(1) + 2

3 =
1

4
− 1 + C1 + 2

C1 =
7

4

y =
x4

4
− x3 +

7

4
x+ 2 .
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AP
R©

Practice Exam
Big Ideas 1 and 2: Limits and Derivatives

Section 1: Multiple Choice

1. lim
x→∞

(

3x2 − 5x− 2

x2 − 4

)( 1
x2

1
x2

)

= lim
x→∞

(

3x2

x2 − 5x
x2 − 2

x2

x2

x2 − 4
x2

)

= lim
x→∞

3− 5
x − 2

x2

1− 4
x2

= 3 .

An alternative approach is to examine the applicability of L’Hôpital’s Rule.

lim
x→∞

(

3x2 − 5x− 2
)

= ∞

lim
x→∞

(

x2 − 4
)

= ∞

Since lim
x→∞

(

3x2 − 5x− 2
)

= ∞ and lim
x→∞

(

x2 − 4
)

= ∞

lim
x→∞

(

3x2−5x−2
x2−4

)

is an indeterminate form at ∞ of the type ∞
∞ and L’Hôpital’s Rule is

applicable as follows:

lim
x→∞

(

3x2 − 5x− 2

x2 − 4

)

= lim
x→∞

6x− 5

2x

Since lim
x→∞

(6x− 5) = ∞ and lim
x→∞

(2x) = ∞, lim
x→∞

6x−5
2x is an indeterminate form at ∞ of

the type ∞
∞ and L’Hôpital’s Rule once again is applicable as follows:

lim
x→∞

(

3x2 − 5x− 2

x2 − 4

)

= lim
x→∞

6x− 5

2x
=

6

2
= 3 .

CHOICE C

2.
d

dx

(

tan−1 x2
)

=
1

1 + (x2)
2 (2x) =

2x

1 + x4
.

CHOICE A

3. lim
x→∞

(

cosx

x2 + 4x

)( 1
x2

1
x2

)

= lim
x→∞

cos x
x2

1 + 4
x

lim
x→∞

−1

x2
≤ lim

x→∞

cosx

x2
≤ lim

x→∞

1

x2

0 ≤ lim
x→∞

cosx

x2
≤ 0

By the Squeeze Theorem lim
x→∞

cosx

x2
= 0

Therefore, lim
x→∞

cosx
x2

1 + 4
x

=
0

1
= 0 .

L’Hôpital’s Rule would not have been applicable since lim
x→∞

(cosx) 6= ∞while lim
x→∞

(

x2 + 4x
)

= ∞

and lim
x→∞

(

cosx
x2+4x

)

is not indeterminate form.

CHOICE B
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4. f(x) =
x2 + 2x− ax− 2a

x− a
=
x(x+ 2)− a(x+ 2)

x− a
=

(x− a)(x+ 2)

x− a
= x+ 2

f(a) = a+ 2 .

CHOICE C

5. lim
h→0

cos (2π + h)− 1

h
= lim

h→0

cos 2π cos(h)− sin 2π sin(h)− 1

h
= lim

h→0

1 cos(h)− 0 sin(h)− 1

h
=

lim
h→0

cos(h)− 1

h

(

cos(h) + 1

cos(h) + 1

)

= lim
h→0

cos2 h− 1

h(cos(h) + 1)
= lim

h→0

−sin2h

h(cos(h) + 1)
=

lim
h→0

[

−
(

sin(h)

h

)(

sin(h)

cos(h) + 1

)]

= − lim
h→0

(

sin(h)

h

)

lim
h→0

(

sin(h)

cos(h) + 1

)

= (1)(0) = 0 .

An alternate approach is to apply L’Hôpital’s Rule.

For lim
h→0

cos (2π+h)−1
h , lim

h→0
(cos (2π + h)− 1) = 0 and lim

h→0
(h) = 0 so lim

h→0

cos (2π+h)−1
h is

an indeterminate form at 0 of the type 0
0 and L’Hôpital’s Rule is applicable as follows:

lim
h→0

cos (2π+h)−1
h = lim

h→0

−sin (2π+h)
1 = −sin 2π = 0 .

CHOICE B

6. Since f is differentiable, 2ax2 + bx− 1 = bx2 + bx− a at x = 3

(2a− b)x2 = 1− a

x2 =
1− a

2a− b

at x = 3, 9 =
1− a

2a− b

f ′(x) =
{

4ax+ b x ≤ 3
2bx+ b x > 3

Since f is differentiable, 4ax+ b = 2bx+ b at x = 3

2a = b

Solve the system:

{

9 = 1−a
2a−b

2a = b

18a− 9b = 1− a

19a− 9b = 1

19a− 9(2a) = 1

a = 1

b = 2

a+ b = 1 + 2 = 3 .

CHOICE C
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7. s(t) =
1

15
t3 − 1

2
t2 + 5t−1

v(t) = s′(t) =
3

15
t2 − 2

2
t− 5t−2

=
t2

5
− t− 5t−2

a(t) = v′(t) = s′′(t) =
2t

5
− 1 + 10t−3

a(5) =
2(5)

5
− 1 +

10

(5)3
=

27

25
.

CHOICE D

8. For lim
x→0

x2ex

cosx− 1

lim
x→0

x2ex = 0 and lim
x→0

(cosx− 1) = 0

Therefore lim
x→0

x2ex

cosx−1 is an indeterminate form at 0 of the type 0
0 and L’Hôpital’s Rule is

applicable as follows:

lim
x→0

x2ex

cosx− 1
= lim

x→0

2xex + x2ex

−sinx

For lim
x→0

2xex + x2ex

−sinx

lim
x→0

(

2xex + x2ex
)

= 0 and lim
x→0

(−sinx) = 0

Therefore lim
x→0

2xex+x2ex

−sin x is an indeterminate form at 0 of the type 0
0 and L’Hôpital’s Rule

is again applicable as follows:

lim
x→0

2xex + x2ex

−sinx
= lim

x→0

2ex + 2xex + 2xex + x2ex

−cosx
= lim

x→0

2
(

ex
(

1 + 2x+ x2
))

−cosx
= −2 .

CHOICE B

9. The slope of the tangent line is f ′(x).

f ′(x) = ex + xex

f ′(1) = e(1) + (1)e(1) = 2e .

CHOICE C

10. f(x) =
√
2x+ 4 = (2x+ 4)

1/2

f ′(x) =
1

2
(2x+ 4)

−1/2
(2) = (2x+ 4)

−1/2

f ′′(x) =
−1

2
(2x+ 4)

−3/2
(2) =

−1

(2x+ 4)
3/2

f ′′(−1) =
−1

(−2 + 4)
3/2

=
−1

23/2
=

−1

2
√
2
=

−
√
2

4
.

CHOICE B
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11. d

dx

(

lnx

x2

)

=
d
dx(lnx)

(

x2
)

− (lnx)
(

d
dx

(

x2
))

x4
=

x2

x − (lnx)(2x)

x4
=

x− 2x lnx

x4
=
x(1− 2 lnx)

x4
=

1− 2 lnx

x3
.

CHOICE C

12. f(x) = tan
(

x2
)

f ′(x) =
(

sec2
(

x2
))

(2x) = 2x sec2
(

x2
)

f ′
(√

π

3

)

= 2

(√

π

3

)

sec2
(√

π

3

)2

=
2
√
3π

3

(

1

cos2
(

π
3

)

)

=

2
√
3π

3

(

1
1
4

)

=
8
√
3π

3
.

CHOICE C

13. f(x) = 3x
√

cos (3x) = 3x(cos (3x))
1/2

f ′(x) = 3
[

1(cos (3x))
1/2

+
x

2
(cos (3x))

−1/2
(−sin(3x))(3)

]

= 3

[

(cos (3x))
1/2 − 3x sin (3x)

2(cos (3x))1/2

]

f ′(0) = 3

[

(cos (3(0)))1/2 − 3(0) sin (3(0))

2(cos (3(0)))
1/2

]

= 3
[

(cos 0)1/2 − 0
]

= 3 .

CHOICE D

14. y = sin (2x+ 1)

y′ = 2 cos (2x+ 1)

y

(

−1

2

)

= sin

(

2

(

−1

2

)

+ 1

)

= sin (0) = 0

The point of tangency is

(−1

2
, 0

)

y′
(

−1

2

)

= 2 cos

(

2

(

−1

2

)

+ 1

)

= 2 cos 0 = 2

y − 0 = 2

(

x−
(

−1

2

))

y = 2x+ 1 .

CHOICE B
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15. x2 − 2xy − y2 = −1

d

dx

(

x2 − 2xy − y2
)

=
d

dx
(−1)

d

dx

(

x2
)

− 2

((

d

dx
(x)

)

y + x

(

dy

dx

))

− 2(y)

(

dy

dx

)

= 0

2x− 2

(

y + x

(

dy

dx

))

− 2y

(

dy

dx

)

= 0

2x− 2y − 2x

(

dy

dx

)

− 2y

(

dy

dx

)

= 0

x− y − x

(

dy

dx

)

− y

(

dy

dx

)

= 0

(−x− y)

(

dy

dx

)

= −x+ y

dy

dx
=

−x+ y

−x− y
=

−1(x− y)

−1(x+ y)
=

x− y

x+ y
.

CHOICE D

16. x+ sin (xy) + y = 1

1 + cos (xy)

(

1y + x
dy

dx

)

+
dy

dx
= 0

1 + y cos (xy) + x cos (xy)
dy

dx
+
dy

dx
= 0

(x cos (xy) + 1)
dy

dx
= −1− y cos (xy)

dy

dx
=

−1− y cos (xy)

x cos (xy) + 1

Solve for y at x = 0:

(0) + sin (0) + y = 1

y = 1

at (0, 1)
dy

dx
=

−1− (1) cos (0)

(0) cos (0) + 1

=
−1− (1)(1)

0 cos 0 + 1

=
−2

1

= −2 .

CHOICE A

17. y =
1

23x
= 2−3x

y′ =
(

2−3x
)

(−3)(ln 2) = (−1)
(

2−3x
)

(3 ln 2) = (−1)
(

2−3x
)(

ln 23
)

= −2−3x(ln 8) .

CHOICE A
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18. The critical number(s) can be determined where f ′(x) = 0 or where f ′(x) does not exist.

Here, the critical number(s) are determined solely at f ′(x) = 0 as follows:

f(x) = 2xe−x2

f ′(x) = 2
(

1
(

e−x2
)

+ x
(

e−x2
)

(−2x)
)

= 2
(

e−x2(

1− 2x2
)

)

Let

f ′(x) = 2
(

e−x2(

1− 2x2
)

)

= 0

1− 2x2 = 0

2x2 = 1

x2 =
1

2

x = ±
√
2

2
.

CHOICE C

19. f(0) = ln 3 f ′(0) = 2 g(0) = −1

2
g′(0) =

1

2

h(x) =
ef(x)

(g(x))2

h′(x) =
ef(x)(f ′(x))(g(x))

2 − 2g(x)g′(x)ef(x)

(g(x))
4

h′(0) =
ef(0)(f ′(0))(g(0))

2 − 2g(0)g′(0)ef(0)

(g(0))
4

=
eln 3(2)

(

− 1
2

)2 − 2
(

− 1
2

)(

1
2

)

eln 3

(

− 1
2

)4

=
3(2)

(

1
4

)

+ 1
2 (3)

1
16

=
3
2 + 3

2
1
16

= 48 .

CHOICE D

20. The function f has no derivative at x = −2 because there is a cusp at x = −2. f has no
derivative at x = 0 since it has a vertical tangent at x = 0.

CHOICE B
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21. f ′(x) = x2ex − 5xex + 6ex

Set f ′(x) = x2ex − 5xex + 6ex = 0 to determine the critical number(s), if any, to then
define the interval(s) where f is increasing.

f ′(x) = x2ex − 5xex + 6ex = 0

ex
(

x2 − 5x+ 6
)

= 0

ex(x− 3)(x− 2) = 0

x = 3 x = 2

Interval Sign of ex Sign of x− 3 Sign of x− 2 Sign of f ′(x) = 3x2 + 6x Conclusion

(−∞, 2) + − − + Increasing
(2, 3) + − + − Decreasing
(3,∞) + + + + Increasing

f is increasing for x ≤ 2 and x ≥ 3 .

22. Summarizing in chart form the pertinent information from the graph and the given for
determining where the function f is decreasing, which is where f ′(x) < 0, yields

Interval Sign of f ′(x) Conclusion

(−∞,−2) + Increasing
(−2, 0) + Increasing
(0, 1) − Decreasing
(1,∞) + Increasing

The function f is decreasing on 0, 1 .

CHOICE C

23. The function f is concave down where f ′′(x) < 0 determined on the graph where the
tangent line(s) to the graph of f ′ have a negative slope. Summarizing the pertinent infor-
mation from the graph along with the given information yields the following chart:

Interval Sign of f ′′(x) Conclusion

(−∞,−2) − Concave Down
(−2,−0.843) + Concave Up

(−0.843, 0.593) − Concave Down
(0.593,∞) + Concave Up

f is concave down on (−∞,−2) and (−0.843, 0.593).

CHOICE A
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24. f(x) = ln
(

2x2
)

is differentiable on the interval
[

1√
2
,
√

e
2

]

and is therefore also continuous

on
[

1√
2
,
√

e
2

]

, thereby satisfying the conditions of the Mean Value Theorem.

f

(√
2

2

)

= ln



2

(√
2

2

)2


 = ln

(

2

(

1

2

))

= ln(1) = 0

f

(√
2e

2

)

= ln



2

(√
2e

2

)2


 = ln

(

2

(

2e

4

))

= ln e = 1

The endpoints on the interval are

(√
2

2
, 0

)

and

(√
2e

2
, 1

)

The number(s) c in the open interval

(√
2

2
,

√
2e

2

)

guaranteed by the Mean Value Theorem

satisfy the equation f ′(c) =
1− 0

√
2e
2 −

√
2
2

=
2√

2e−
√
2

f(x) = ln
(

2x2
)

= ln 2 + 2 lnx

f ′(x) =
d

dx
(ln 2 + 2 lnx) =

d

dx
(ln 2) + 2

d

dx
(lnx) =

2

x

f ′(c) =
2

c
=

2√
2e−

√
2

c =
√
2e−

√
2 =

√
2(
√
e− 1) .

CHOICE D

25. db

dt
= 2

dh

dt
= −1

A =
1

2
bh

at h = 5 A = 5

5 =
1

2
(b)(5)

b = 2

dA

dt
=

1

2

(

b

(

dh

dt

)

+ h
db

dt

)

=
1

2
(2(−1) + 5(2)) = 4 .

CHOICE B
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26.

h

b

d

db

dt
=
dh

dt
= 3

b2 + h2 = d2

2b

(

db

dt

)

+ 2h

(

dh

dt

)

= 2d

(

dd

dt

)

b

(

db

dt

)

+ h

(

dh

dt

)

= d

(

dd

dt

)

4(3) + 3(3) = 5

(

dd

dt

)

(

dd

dt

)

=
21

5
= 4.2 .

CHOICE B

27. s(t) = 3t4 − 8t3 − 6t2 + 24t

v(t) = s′(t) = 12t3 − 24t2 − 12t+ 24 = 0

t3 − 2t2 − t+ 2 = 0

t2(t− 2)− 1(t− 2) = 0
(

t2 − 1
)

(t− 2) = 0

(t− 1)(t+ 1)(t− 2) = 0

t = 1 t = −1 t = 2
The toddler is at rest at t = 1 and t = 2.

CHOICE D

28. f(x) = xe1−x

f ′(x) = 1
(

e1−x
)

+ x
(

e1−x
)

(−1)

= e1−x(1− x)
Solve f ′(x) = e1−x(1− x) = 0 to determine the critical number(s).

1− x = 0

x = 1

The absolute maximum of f on [−5, 5] occurs at f(−5), f(5), or f(1)

f(−5) = −5e1+5 = −5e6

f(5) = 5e1−5 =
5

e4

f(1) = 1e0 = 1

Since −5e6 <
5

e4
< 1, the absolute maximum of f on [−5, 5] is 1.

CHOICE C
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29.

y =
√
x

D =

√

(x− 4)2 + (y − 0)2 =

√

(x− 4)2 + (y)2 =

√

(x− 4)2 +
(√
x
)2

=
√

x2 − 8x+ 16 + x =
√

x2 − 7x+ 16

D2 = x2 − 7x+ 16

2DD′ = 2x− 7

Let

2DD′ = 2x− 7 = 0

x =
7

2
= 3.5 .

CHOICE B

30. f ′′(x) = 2xex(x− 1)

Let

f ′′(x) = 2xex(x− 1) = 0

x = 0 x = 1

Interval Sign of x Sign of ex Sign of x− 1 Sign of f ′′(x) Conclusion

(−∞, 0) − + − + Concave Up
(0, 1) + + − − Concave Down
(1,∞) + + + + Concave Up

The inflection point(s) of f occur where the concavity of f changes. A review of the
conclusions summarized in the chart above show a change of concavity at x = 0 and x = 1.

Therefore, f has inflection points at 0 and 1.

CHOICE D
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Section 2: Free Response

1. (a) (x− 1)
2
+ (y + 1)

2
= 2

d

dx

[

(x− 1)
2
+ (y + 1)

2
]

=
d

dx
(2)

2(x− 1) + 2(y + 1)
dy

dx
= 0

(x− 1) + (y + 1)
dy

dx
= 0

(y + 1)
dy

dx
= −x+ 1

dy

dx
=

−x+ 1

y + 1
.

(b) A horizontal tangent line to the graph will exist where dy
dx = 0

dy
dx = 0 where

−x+ 1 = 0

x = 1

Determine the point of tangency for each horizontal tangent by determining y for
x = 1 as follows:

(1− 1)2 + (y + 1)2 = 2

(y + 1)
2
= 2

y + 1 = ±
√
2

y = −1±
√
2

Two points with horizontal tangents:
(

1,−1 +
√
2
)

and
(

1, −1−
√
2
)

.

Equations of horizontal tangents: y = −1 +
√
2 and y = −1−

√
2 .

(c) For the equation of the normal line, y = x+ b, m = 1.

Consequently, the slope of the tangent line, dy
dx = −1 = −x+1

y+1

−y − 1 = −x+ 1

x− y = 2

y = x− 2

(x− 1)2 + (y + 1)2 = 2

(x− 1)
2
+ (x− 2 + 1)

2
= 2

(x− 1)
2
+ (x− 1)

2
= 2

2(x− 1)2 = 2

(x− 1)
2
= 1

x− 1 = ±1

x = 1± 1

x = 0 x = 2

Substituting x = 0 x = 2 into y = x− 2 yields the points (2, 0) and (0,−2)
For y = x+ b,
Substituting (2, 0) yields 0 = 2 + b b = −2

Substituting (0,−2) yields −2 = 0 + b b = −2
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(d) at (2, 0) with dy
dx = −1

y − 0 = −1(x− 2) y = −x+ 2

at (0,−2) with dy
dx = −1

y − (−2) = −1(x− 0) y + 2 = −x y = −x− 2 .

2. C

6

A 8-x D x B

8

(a) Let z be the distance that the dog swims whether it be a direct swim from A to C
or a partial swim from D to C after a partial run. Then dz

dt = 2. The dog runs at
dx
dt = 8. The distance the dog swims directly from A to C is

AC =
√
62 + 82 = 10.

Time =
Distance

Rate
=

10
dx
dt

=
10

2
= 5s .

(b)
Distance Run

dx
dt

+
Swimming Distance

dz
dt

=
8

8
+

6

2
= 4s .

(c) T (x) =
8− x

8
+

√
x2 + 36

2
.

(d) T ′(x) =
−1

8
+

1

2

(

1

2

(

x2 + 36
)−1/2

)

(2x)

=
−1

8
+

x

2(x2 + 36)
1/2

Let T ′(x) =
−1

8
+

x

2(x2 + 36)
1/2

= 0

1

8
=

x

2(x2 + 36)1/2

8x = 2
(

x2 + 36
)1/2

4x =
(

x2 + 36
)1/2

16x2 = x2 + 36

15x2 = 36

x2 =
36

15

x2 =
12

5

x =
2
√
15

5
≈ 1.549 .

(e) T (1.549) =
8− 1.549

8
+

√
1.5492 + 36

2
≈ 3.904s .
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3. (a) The object comes to rest when v(t) = 0 which is at t = 0, t = 2, t = 5 and t = 7
The object changes direction when, from the left to the right of the t value for which
v(t) = 0, v(t) changes from v(t) > 0 to v(t) < 0 or v(t) < 0 to v(t) > 0. v(t) > 0 is
shown on the graph with positive y coordinates while v(t) < 0 is shown on the graph
with negative y coordinates. Therefore, the object changes directions at t = 5 and
t = 7.

(b) The object is moving left on the interval (5, 7) since v(t) < 0 on (5, 7) as shown the
graph with negative y coordinates on (5, 7).

(c) The speed of the object is increasing on the interval [2, 3.949] because a(t) = v′(t)
is positive on the interval as evidenced by the slope of the line tangent to v(t) at all
points on the interval [2, 3.949].

(d) The acceleration, a(t), is negative on the intervals (0.564, 2) and (3.949, 6.287) because
the slope of the line tangent to each of the points on the respective intervals is negative.

(e) a(2) = 0 because the slope of the line tangent to v(t) at t = 2 is 0.

4. (a) f ′(x) = cos2(ex)− sin2(ex)

f ′′(x) = 2(cos ex)(−sin ex)(ex)− 2(sin ex)(cos ex)(ex)

= −2ex(cos ex)(sin ex)− 2ex(cos ex)(sin ex)

= −4ex(cos ex)(sin ex)

Let f ′′(x) = −4ex(cos ex)(sin ex) = 0
cos ex = 0 sin ex = 0

ex =
π

2
ex = 0 ex = π

x = ln
(π

2

)

Ø x = lnπ

x = 0.451 x = 1.144

Interval Sign of
−4

Sign of
ex

Sign of
cos ex

Sign of
sin ex

Sign of
f ′′(x)

Conclusion

(0, 0.451) − + + + − Concave Down
(0.451, 1.144) − + − + + Concave Up
(1.144, 1.5) − + − − − Concave Down

f has an inflection point at x = 0.451 and at x = 1.144 because, as shown in the chart
above, the concavity of f changes at x = 0.451 and at x = 1.144.

(b) f
′(x) = cos2(ex)− sin2(ex)

= cos2(ex)−
(

1− cos2(ex)
)

= 2 cos2(ex)− 1

To determine the critical number(s),

set 2 cos2(ex)− 1 = 0

cos2(ex) =
1

2

cos (ex) =
±
√
2

2
ex =

π

4
ex =

3π

4
ex =

5π

4
ex =

7π

4

x = ln
π

4
x = ln

3π

4
x = ln

5π

4
x = ln

7π

4

x = −0.241 x = 0.857 x = 1.367 x = 1.704

The only values of x in the domain are x = 0.857 and x = 1.367
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Interval Sign of f ′(x) Conclusion

(0, 0.857) − Decreasing
(0.857, 1.367) + Increasing
(1.367, 1.5) − Decreasing

By the first derivative test, f has a local minimum at the critical number, x = 0.857,
since the graph of f changes from decreasing to increasing at x = 0.857 as shown in
the table above.

(c) Referring to the table in part (a) above, f ′′(x) < 0 on the two intervals, (0, 0.451)
and (1.144, 1.5).

(d) y − f ′(1) = f ′′(1)(x− 1)

y − (cos2 e − sin2 e) = (−4e cose sin e)(x− 1)

y − 0.663 = 4.072(x− 1)

y = 4.072x− 4.072 + 0.663

y = 4.072− 3.409




