Pre-Calculus		
domain of $\sqrt{s(x)}$	$s(x) \ge 0$	
domain of $\frac{1}{s(x)}$	$\left\{x\;;\;s(x)\neq 0\right\}$	
domain of $\ln[s(x)]$	$\{x;s(x)>0\}$	
zeros or x-intercepts	x such that $y = 0$ or $f(x) = 0$	
y-intercept	y such that $x = 0$	
symmetry with respect to y-axis (even function)	$f\left(x\right) = f\left(-x\right)$	
symmetry with respect to origin (odd function)	$f\left(-x\right) = -f\left(x\right)$	
symmetry with respect to x-axis	g(y) = g(-y)	
vertical asymptote	$\lim_{x \to a^{\pm}} f(x) = \infty \text{ or } \lim_{x \to a^{\pm}} f(x) = -\infty$ $\lim_{x \to \pm \infty} f(x) = a$	
horizontal asymptote	$\lim_{x \to \pm \infty} f(x) = a$	
point-slope form of a linear equation	$y - y_1 = m(x - x_1)$	
(tangent line approximation)	y-f(a) = f'(a)(x-a) or y = f'(a)(x-a) + f(a)	
Theorems		
Intermediate Value Theorem	If $f(x)$ is continuous on $[a,b]$ and there exists a number c is in $[a,b]$, then there exists an $f(c)$ such that $f(a) \le f(c) \le f(b)$	
Extreme Value Theorem	If $f(x)$ is continuous on $[a,b]$, then there exists an absolute maximum and an absolute minimum on the interval $[a,b]$	
Mean Value Theorem (Derivatives)	If $f(x)$ is continuous on $[a,b]$ and differentiable on (a,b) , then there exists a number c is in $[a,b]$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$	
Special Case: Rolle's Theorem	if $f(a) = f(b)$, then $f'(c) = 0$	
Mean Value Theorem (Integrals)	If $f(x)$ is continuous on $[a,b]$ and there exists a number c is in (a,b) , then $\int_{a}^{b} f(x)dx = f(c)(b-a)$	
First Fundamental Theorem of Calculus	$\int_{a}^{b} f(x)dx = F(b) - F(a)$ $\frac{d}{dx} \left[\int_{a}^{x} f(t)dt \right] = f(x) \text{ or } \frac{d}{dx} \left[\int_{a}^{g(x)} f(t)dt \right] = f(g(x)) \cdot g'(x)$	
Second Fundamental Theorem of Calculus	$\frac{d}{dx} \left[\int_{a}^{x} f(t) dt \right] = f(x) \text{ or } \frac{d}{dx} \left[\int_{a}^{g(x)} f(t) dt \right] = f(g(x)) \cdot g'(x)$	

Position, Velocity, Acceleration		
position function	$s(t) = \int v(t)dt = \int \left[\int a(t)dt\right]dt$ (given initial conditions)	
velocity function	$s'(t) = v(t) = \int a(t)dt$ (given initial condition)	
average velocity on $[a,b]$	$\frac{x(b)-x(a)}{b-a} \text{ or } \frac{1}{b-a} \int_{a}^{b} v(t) dt$	
instantaneous velocity at $t = a$	s'(a) = v(a)	
acceleration function	s''(t) = v'(t) = a(t)	
particle moving right	v(t) > 0	
particle moving left	v(t) < 0	
particle at rest	v(t) = 0	
particle changes direction	v(t) changes sign	
speed	v(t)	
speed decreases	v(t) and $a(t)$ have opposite signs	
speed increases	v(t) and $a(t)$ have same signs	
displacement	$\int_{a}^{b} v(t)dt = \text{postive area} + \text{negative area}$	
total distance traveled	$\int_{a}^{b} v(t) dt = \text{ postive area} + \text{negative area} $	
net change	$\int_{a}^{b} F'(x) dx = F(b) - F(a)$	
	Graph Features	
slope of a curve $f(x)$ at $x = c$	f'(z)	
slope of tangent line of $f(x)$ at $x = c$	f'(c)	
critical numbers	f'(x) = 0 or $f'(x)$ does not exist	
f(x) increasing	f'(x) > 0	
f(x) decreasing	f'(x) < 0	
f(x) concave up	f''(x) > 0 or $f'(x)$ increasing	
f(x) concave down	f''(x) > 0 or $f'(x)$ decreasing	
extrema	absolute (closed interval): compare <i>y</i> -values of the relative extrema AND the endpoints	
	relative (open interval): compare y-values of the critical poin	

First Derivative [Extrema] Test	f has a rel. max when f ' changes from positive to negative f has a rel. min when f ' changes from negative to positive	
Second Derivative [Extrema] Test	f has a rel. max when $f'=0$ or undef. and $f''<0f$ has a rel. min when $f'=0$ or undef. and $f''>0$	
point of inflection	where f has extrema and f changes sign (change in concavity of f)	
Sums, Average, Area, Volume		
left Riemann sum (equal subintervals)	$\int_{a}^{b} f(x)dx \approx \Delta x \Big[f(x_0) + f(x_1) + f(x_2) + \dots + f(x_{n-1}) \Big]$	
right Riemann sum (equal subintervals)	$\int_{a}^{b} f(x) dx \approx \Delta x \Big[f(x_{0}) + f(x_{1}) + f(x_{2}) + \dots + f(x_{n-1}) \Big]$ $\int_{a}^{b} f(x) dx \approx \Delta x \Big[f(x_{1}) + f(x_{2}) + f(x_{3}) + \dots + f(x_{n}) \Big]$ $\int_{a}^{b} f(x) dx \approx \frac{b - a}{n} \Big[f(x_{0}) + f(x_{1}) + \dots + f(x_{n-1}) + f(x_{n}) \Big]$	
midpoint rule (equal subintervals)	$\int_{a}^{b} f(x)dx \approx \frac{b-a}{n} \left[f(x_0) + f(x_1) + \dots + f(x_{n-1}) + f(x_n) \right]$	
trapezoidal sum (equal subintervals)	$\int_{a}^{b} f(x) dx \approx \frac{1}{2} \Delta x \Big[f(x_0) + 2f(x_1) + \dots + 2f(x_{n-1}) + f(x_n) \Big]$	
average value of $f(x)$ on $[a,b]$	$\frac{1}{b-a}\int_{a}^{b}f(x)dx$	
cross-sectional area base = $f(x)$ * or radius = $\frac{f(x)}{2}$ c = multiple of base	Square: $\int_{a}^{b} (f(x))^{2} dx$ Rectangle: $\int_{a}^{b} c(f(x))^{2} dx$ Isoceles Right Triangle (leg base): $\int_{a}^{b} \frac{1}{2} (f(x))^{2} dx$ Equilateral Triangle: $\int_{a}^{b} \frac{\sqrt{3}}{4} (f(x))^{2} dx$ (not common)	
*in terms of x if perpendicular to x-axis, *in terms of y if perpendicular to y-axis	Semicircle: $\int_{a}^{b} \frac{1}{2} \pi \left(\frac{1}{2} f(x)\right)^{2} dx = \int_{a}^{b} \frac{\pi}{8} (f(x))^{2} dx$	
area between curves (always check for intersection on interval)	$\int_{left}^{right} (top-bottom) dx \text{ or } \int_{lower}^{upper} (right-left) dy$	
volume	Upper/right function = $R(x)$ or $R(y)$ Lower/left function = $r(x)$ or $r(y)$	
disk Method	$V = \pi \int_{left}^{right} \left[R(x) \right]^2 dx \qquad V = \pi \int_{lower}^{upper} \left[R(y) \right]^2 dy$	
washer Method	$V = \pi \int_{left}^{right} \left[R(x)^2 - r(x)^2 \right] dx \qquad V = \pi \int_{lower}^{upper} \left[R(y)^2 - r(y)^2 \right] dy$	
If revolving about $x = a$ or $y = b$, always setup $R(x)$ and $r(x)$ as radius = upper/right line – lower/left line (just think of outer and inner radius) [i.e. $R(x) = f(x) - a$ (f above a) or $a - f(x)$ (a above f); repeat for $r(x)$]		

Other Important Rules, Notations, and Definitions		
average rate of change	$\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} \text{ or } \frac{f(b) - f(a)}{b - a}$	
instantaneous rate of change of y with respect to x	$\frac{dy}{dx}$	
L' Hôpital's Rule	If $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0}$ or $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\infty}{\infty}$, then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$	
special limits	$\lim_{x \to 0} \frac{\sin ax}{ax} = 1 \qquad \lim_{x \to 0} \frac{\cos ax - 1}{ax} = 0$ $\lim_{x \to \infty} \frac{\sin ax}{ax} = 0 \qquad \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$ $y' = f'(x) = \frac{dy}{dx} \qquad y'' = f''(x) = \frac{d^2y}{dx^2} \qquad f^{(n)}(x) = \frac{d^ny}{dx^n}$	
derivative notation	$y' = f'(x) = \frac{dy}{dx}$ $y'' = f''(x) = \frac{d^2y}{dx^2}$ $f^{(n)}(x) = \frac{d^ny}{dx^n}$	
continuity	 f(a) exists (defined) lim_{x→a} f(x) exists (left- and right-hand limits equal) lim_{x→a} f(x) = f(a) 	
definition of derivative (limit of the difference quotient)	$\begin{cases} f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} & \text{or } f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} \\ f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \end{cases}$ $\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u)du$ If $f^{-1}(x) = g(x)$, then $g'(x) = \frac{1}{f'(g(x))}$	
change of variables for definite integrals	$\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u)du$	
derivative of an inverse function	If $f^{-1}(x) = g(x)$, then $g'(x) = \frac{1}{f'(g(x))}$	

Derivative Formulas
$$\frac{d}{dx}[c] = 0 \qquad \frac{d}{dx}[x] = 1 \qquad \frac{d}{dx}[cx] = c \qquad \frac{d}{dx}[x^c] = cx^{c-1}$$

$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + f'(x)g(x) \qquad \frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}$$

$$\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x) \qquad \frac{d}{dx}[\ln x] = \frac{1}{x} \qquad \frac{d}{dx}[e^x] = e^x \qquad \frac{d}{dx}[\sin x] = \cos x$$

$$\frac{d}{dx}[\cos x] = -\sin x \qquad \frac{d}{dx}[\tan x] = \sec^2 x \qquad \frac{d}{dx}[\cot x] = -\csc^2 x \qquad \frac{d}{dx}[\sec x] = \sec x \tan x$$

$$\frac{d}{dx}[\csc x] = -\csc x \cot x \qquad \frac{d}{dx}[\arcsin x] = \frac{1}{\sqrt{1 - x^2}} \qquad \frac{d}{dx}[\arctan x] = \frac{1}{1 + x^2}$$
Integration Formulas
$$\int dx = x + c \qquad \int x^n dx = \frac{x^{n+1}}{n+1} + c \qquad \int \frac{dx}{x} = \ln|x| + c$$

$$\int e^x dx = e^x + c \qquad \int \sin x dx = -\cos x + c \qquad \int \cos x dx = \sin x + c$$

$$\int \tan x dx = -\ln|\cos x| + c \qquad \int \csc x dx = -\ln|\csc x + \cot x| + c \qquad \int \sec x dx = \ln|\sec x + \tan x| + c$$

$$\int \cot x dx = \ln|\sin x| + c \qquad \int \sec^2 x dx = \tan x \qquad \int \csc^2 x dx = -\cot x + c$$

$$\int \sec x \tan x dx = \sec x + c \qquad \int \csc x \cot x dx = -\csc x + c \qquad \int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin \frac{u}{a} + c$$

$$\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} \arccos \frac{u}{a} + c$$