Answer Key for AP Calculus AB Practice Exam, Section I

Question 1: B	Question 76: D
Question 2: C	Question 77: B
Question 3: D	Question 78: A
Question 4: D	Question 79: B
Question 5: C	Question 80: C
Question 6: D	Question 81: C
Question 7: D	Question 82: A
Question 8: B	Question 83: A
Question 9: B	Question 84: C
Question 10: A	Question 85: D
Question 11: A	Question 86: A
Question 12: C	Question 87: C
Question 13: A	Question 88: C
Question 14: D	Question 89: B
Question 15: A	Question 90: C
Question 16: B	
Question 17: B	
Question 18: D	
Question 19: A	
Question 20: C	
Question 21: D	
Question 22: D	

Question 23: B Question 24: A Question 25: A Question 26: B Question 27: C Question 28: B Question 29: A Question 30: B

Multiple-Choice Section for Calculus AB 2019 Course Framework Alignment and Rationales

Skill		Learning Objective	Topic
1.E		FUN-6.C	Finding Antiderivatives and Indefinite Integrals - Basic Rules and Notation
(A)	Incorrect. This is	is the derivative of $\frac{x^2}{4}$, not	the antiderivative.
(B)	Correct. By the power rule for antiderivatives, the antiderivative of x^n is $\frac{x^{n+1}}{n+1}$ for $n \ne -1$. Therefore, $\int \frac{x^2}{4} dx = \frac{1}{4} \int x^2 dx = \frac{1}{4} \cdot \frac{x^3}{3} + C = \frac{x^3}{12} + C.$		
(C)	Incorrect. This response would result if the power rule for antiderivatives was not applied correctly. The antiderivative of x^2 was taken to be x^3 rather than $\frac{x^3}{3}$.		
(D)	Incorrect. This response would result if the power rule for antiderivatives was not applied correctly. The antiderivative of x^2 was taken to be $3x^3$ rather than $\frac{x^3}{3}$.		

Question			
Skill		Learning Objective	Topic
1.D		CHA-2.C	Defining the Derivative of a Function and Using Derivative Notation
(A)	Incorrect. This	response would result if the	derivative of cos x was
	taken to be sin :	x rather than $-\sin x$. The s	slope at the point $\left(\frac{\pi}{2}, 0\right)$
	was therefore taken to be 1. In addition, an equation of a line through the point (x_0, y_0) was written as $y = m(x + x_0) + y_0$ instead of $y = m(x - x_0) + y_0$, leading to the response		
	$y = +1\left(x + \frac{\pi}{2}\right)$	$+0=x+\frac{\pi}{2}.$	
(B)	Incorrect. This i	response would result if the	derivative of cos x was
	taken to be sin :	x rather than $-\sin x$. The s	slope at the point $\left(\frac{\pi}{2},0\right)$
	was therefore ta	ken to be 1, giving an equa	tion of the tangent line as
	$y = +1\left(x - \frac{\pi}{2}\right)$	$+0=x-\frac{\pi}{2}.$	
(C)	Correct. The slo	ope of the tangent line is the	e value of the derivative at
	$x=\frac{\pi}{2}.$		
	$\frac{dy}{dx} = -\sin x \Rightarrow \frac{dy}{dx}\Big _{x=\frac{\pi}{2}} = -\sin\left(\frac{\pi}{2}\right) = -1$		
	At $x = \frac{\pi}{2}$, $y = \cos\left(\frac{\pi}{2}\right) = 0$.		
	An equation of	the tangent line at the point	$t\left(\frac{\pi}{2},0\right)$ is therefore
	$y = -1\left(x - \frac{\pi}{2}\right) + 0 = -x + \frac{\pi}{2}.$		
(D)	Incorrect. This response might come from writing an equation of a line through the point (x_0, y_0) as $y = m(x + x_0) + y_0$ instead of		
	$y = m(x - x_0) + y_0$, leading to $y = -1(x + \frac{\pi}{2}) + 0 = -x - \frac{\pi}{2}$.		
	Alternately, an error might have been made in simplifying an		
	equation of the tangent line. The slope of the tangent line at $x = \frac{\pi}{2}$		
	was correctly found.		
	$\left \frac{dy}{dx} = -\sin x \Rightarrow \frac{dy}{dx} \right _{x = \frac{\pi}{2}} = -\sin\left(\frac{\pi}{2}\right) = -1$		
	An equation of	the tangent line at the point	$t\left(\frac{\pi}{2},0\right)$ was written, as
	follows.		. ,
	$y = -1\left(x - \frac{\pi}{2}\right)$	$+0=-x-\frac{\pi}{2}$	

Skill		Learning Objective	Topic
1.E		FUN-3.C	The Chain Rule
(A)	Incorrect. This response might come from incorrectly applying the chain rule		
	twice as $\frac{d}{dx}(f)$	f(g(x)) = f'(g'(x)), as follows	vs.
	$\frac{d}{dx} \Big(2 \Big(\sin \sqrt{x} \Big) \Big)$	$\binom{2}{x} = 2 \cdot \left(2 \cdot \frac{d}{dx} \left(\sin \sqrt{x}\right)\right) = 2 \cdot 2$	$2 \cdot \cos\left(\frac{d}{dx}(\sqrt{x})\right) = 4\cos\left(\frac{1}{2\sqrt{x}}\right)$
(B)		s response might come from co	rrectly applying the chain rule
		out not the second, as follows.	
	$\frac{d}{dx}\left(2\left(\sin\sqrt{x}\right)^2\right) = 2 \cdot 2\left(\sin\sqrt{x}\right) \cdot \frac{d}{dx}\left(\sin\sqrt{x}\right) = 2 \cdot 2\left(\sin\sqrt{x}\right) \cdot \cos\sqrt{x}$		
(C)	Incorrect. This response might come from using the chain rule only once,		
	with the inner	most "inside" function, \sqrt{x} , as	follows.
	$\frac{d}{dx}\left(2\left(\sin\sqrt{x}\right)^2\right) = 2 \cdot 2\left(\sin\sqrt{x}\right) \cdot \frac{d}{dx}\left(\sqrt{x}\right) = 2 \cdot 2\left(\sin\sqrt{x}\right) \cdot \frac{1}{2\sqrt{x}}$		
(D)	Correct. The	chain rule must be used twice for	or this composition of three
	functions.		
	$\frac{d}{dx}\left(2(\sin\sqrt{x})^2\right) = 2 \cdot 2(\sin\sqrt{x}) \cdot \left(\frac{d}{dx}(\sin\sqrt{x})\right)$		
	$= 2 \cdot 2(\sin\sqrt{x}) \cdot \left(\cos\sqrt{x} \cdot \frac{d}{dx}(\sqrt{x})\right)$		
	$= 2 \cdot 2 \left(\sin \sqrt{x} \right)$	$\left(\cdot \right) \cdot \cos \sqrt{x} \cdot \frac{1}{2\sqrt{x}}$	
	$=\frac{2\sin\sqrt{x}\cos\sqrt{x}}{\sqrt{x}}$	\sqrt{x}	

Skill	ll Learning Objective Topic		Topic	
1.E		FUN-6.D	Integrating Using Substitution	
(A)	Incorrect. This r	response would result if the	factor 3 was mishandled during the	
	substitution usir	$\log u = x^3 + 3x - 5, \text{ and th}$	e expression $3x^2 + 3$ from the derivative	
	was substituted	back for u rather than the	expression $x^3 + 3x - 5$, as follows.	
	$u = x^3 + 3x - 5$	$\Rightarrow \frac{du}{dx} = 3x^2 + 3 = 3\left(x^2 + 3\right)$	$(x^2 + 1) \Rightarrow dx = \frac{3 du}{(x^2 + 1)}$	
	$\int \frac{x^2 + 1}{\left(x^3 + 3x - 5\right)}$	$\int_{3}^{3} dx = \int \frac{1}{u^3} \cdot 3 \ du = 3 \cdot \left(-\frac{1}{u^3} \cdot \frac{1}{u^3} \cdot \frac{1}{u^$	$-\frac{1}{2u^2}\bigg) + C = -\frac{3}{2} \cdot \frac{1}{\left(3x^2 + 3\right)^2} + C$	
(B)	Incorrect. Startin	ng with the substitution $u =$	$=x^3+3x-5,$	
	$u = x^3 + 3x - 5$	$\Rightarrow \frac{du}{dx} = 3x^2 + 3 = 3(x^2 + 3)$	$(+1) \Rightarrow dx = \frac{du}{3(x^2+1)}.$	
	Substituting for	$x^3 + 3x - 5$ and for dx given	ves	
	$\int \frac{x^2 + 1}{\left(x^3 + 3x - 5\right)}$	$\int \frac{x^2 + 1}{\left(x^3 + 3x - 5\right)^3} dx = \int \frac{1}{u^3} \cdot \frac{1}{3} du = \frac{1}{3} \cdot \left(-\frac{1}{2u^2}\right) + C.$		
	The expression	$3x^2 + 3$ from the derivative might have been substituted back for u ,		
	however, rather	rather than the expression $x^3 + 3x - 5$.		
(C)	Incorrect. This response would result if the factor 3 was mishandled during the			
	substitution using $u = x^3 + 3x - 5$, as follows.			
	$u = x^{3} + 3x - 5 \Rightarrow \frac{du}{dx} = 3x^{2} + 3 = 3(x^{2} + 1) \Rightarrow dx = \frac{3du}{(x^{2} + 1)}$			
	$\int \frac{x^2 + 1}{\left(x^3 + 3x - 5\right)^3} dx = \int \frac{1}{u^3} \cdot 3 du = 3 \cdot \left(-\frac{1}{2u^2}\right) + C = -\frac{3}{2} \cdot \frac{1}{\left(x^3 + 3x - 5\right)^2} + C$			
(D)	Correct. Starting with the substitution $u = x^3 + 3x - 5$,			
	$u = x^{3} + 3x - 5 \Rightarrow \frac{du}{dx} = 3x^{2} + 3 = 3(x^{2} + 1) \Rightarrow dx = \frac{du}{3(x^{2} + 1)}.$			
	Substituting for	$x^3 + 3x - 5$ and for dx gi	ves	
	$\int \frac{x^2 + 1}{\left(x^3 + 3x - 5\right)}$	$\int_{3}^{3} dx = \int \frac{1}{u^3} \cdot \frac{1}{3} du = \frac{1}{3} \cdot \left(\int_{3}^{3} du du \right) = \frac{1}{3} \cdot \left(\int_{3}^{3} du du \right)$	$\left(-\frac{1}{2u^2}\right) + C = -\frac{1}{6} \cdot \frac{1}{\left(x^3 + 3x - 5\right)^2} + C.$	

Skill		Learning Objective	Topic
2.B		FUN-4.A	Determining Concavity of Functions over Their Domains
(A)	Incorrect. These are the intervals for which $f''(x) < 0$, that is, those on which the graph of f is concave down, not concave up. $f'(x) = 12x^2 - 4x^3$ $f''(x) = 24x - 12x^2 = 12x(2 - x)$ The graph of f'' is a parabola opening downward and with zeros at $x = 0$ and $x = 2$. Therefore, $f''(x) < 0$ on the intervals $(-\infty, 0)$ and $(2, \infty)$.		
(B)	Incorrect. The graph of f will be concave up on intervals where $f''(x) > 0$. This response comes from determining where $f'(x) > 0$, however, rather than where $f''(x) > 0$. $f'(x) = 12x^2 - 4x^3 = 4x^2(3-x) > 0 \text{ when } 3-x > 0, \text{ so when } x < 3.$		
(C)	Correct . The graph of f will be concave up on intervals where $f''(x) > 0$. $f'(x) = 12x^2 - 4x^3$ $f''(x) = 24x - 12x^2 = 12x(2 - x)$ The graph of f'' is a parabola opening downward and with zeros at $x = 0$ and $x = 2$. Therefore, $f''(x) > 0$ on the interval between the two zeros, or $0 < x < 2$.		
(D)	Incorrect. This response comes from determining where $f(x) > 0$ and $f'(x) > 0$ rather than just where $f''(x) > 0$. $f(x) = 4x^3 - x^4 = x^3(4 - x) > 0 \text{ when } 0 < x < 4.$ $f'(x) = 12x^2 - 4x^3 = 4x^2(3 - x) > 0 \text{ when } x < 3.$ Therefore, $f(x) > 0$ and $f'(x) > 0$ only when $0 < x < 3$.		

Skill		Learning Objective	Topic	
1.E		FUN-3.D	Implicit Differentiation	
(A)	Incorrect. This response would result if there was an error in the			
	power rule when	power rule when differentiating $3y^{\frac{1}{3}}$ and when solving for $\frac{dy}{dx}$, as		
	follows.			
	$1 + y^{\frac{1}{3}} \frac{dy}{dx} = \frac{dy}{dx}$.		
	At the point (2,	8), $1 + 2\frac{dy}{dx} = \frac{dy}{dx} \Rightarrow 1 =$	$3\frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{1}{3}.$	
(B)		response would result if the		
		was made during the differ	rentiation of the left side,	
	as follows.			
	$1 - y^{-\frac{2}{3}} = \frac{dy}{dx}$			
	At the point $(2, 8)$, $1 - \frac{1}{4} = \frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{3}{4}$.			
(C)	Incorrect. This response would result if the chain rule was not used			
	during the differentiation of the left side, as follows.			
	$1+y^{-\frac{2}{3}} = \frac{dy}{dx}$			
	At the point $(2, 8)$, $1 + \frac{1}{4} = \frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{5}{4}$.			
(D)	Correct . The chain rule is the basis for implicit differentiation.			
	$1 + y^{-\frac{2}{3}} \frac{dy}{dx} = \frac{dy}{dx}$			
	The point (2, 8)) is on the curve since $x =$	2 and $y = 8$ satisfy the	
	equation. At thi	s point, $1 + \frac{1}{4} \frac{dy}{dx} = \frac{dy}{dx} \Rightarrow$	$\frac{3}{4}\frac{dy}{dx} = 1 \Rightarrow \frac{dy}{dx} = \frac{4}{3}.$	

Skill		Learning Objective	Topic
1.E		FUN-3.A	Derivatives of $\cos x$, $\sin x$, e^x , and $\ln x$
(A)	Incorrect. This response is an antiderivative of $x^5 - 5^x$, not the derivative.		
(B)	Incorrect. This	response would result if the	derivative of a^x was
	taken to be just a^x rather than $(\ln a)a^x$.		
(C)	Incorrect. This response would result if the power rule was applied to		
	the exponential function 5^x , resulting in the response $x \cdot 5^{x-1}$		
	rather than using the exponential rule $\frac{d}{dx}a^x = (\ln a)a^x$.		
(D)	Correct. The derivative of x^5 is $5x^4$ by the power rule, and the		
	derivative of the exponential function 5^x is $(\ln 5)5^x$. Therefore,		
	$\frac{d}{dx}\left(x^5 - 5^x\right) =$	$5x^4 - (\ln 5)5^x.$	

Skill		Learning Objective	Topic
2.B		LIM-2.D	Connecting Limits at Infinity and Horizontal Asymptotes
(A)	Incorrect. This response might come from treating the problem like the limit of a rational function as x goes to infinity when the numerator and denominator are polynomials of the same degree. If only the coefficients of the x^2 term and the e^x term are considered, it might be thought that the limit would be $\frac{-6}{3} = -2$.		
(B)	Correct. The numerator of $\frac{10-6x^2}{5+3e^x}$ is a translated power function and the denominator is a translated exponential function. Since the exponential function e^x grows faster than the power function x^2 , the relative magnitude of the denominator compared to the numerator will result in this expression converging to 0 as x goes to infinity.		
(C)	Incorrect. This response might come from treating the problem like the limit of a rational function as x goes to 0. If only the constant terms are considered, it might be thought that the limit would be $\frac{10}{5} = 2.$		
(D)	Incorrect. It might be thought that the limit is nonexistent since the numerator goes to $-\infty$ and the denominator goes to $+\infty$ as x goes to infinity, but this does not take into account the relative magnitude of the exponential function in the denominator compared to the quadratic term in the numerator as x gets larger.		

Skill		Learning Objective	Topic	
1.E		CHA-5.A Finding the Area Between Curves Expressed as Functions of x		
(A)	Incorrect. This response might come from several errors in the antidifferentiation and evaluation. If the term $2x$ is differentiated rather than antidifferentiated, and if in the resulting evaluation the 2 is not included in the evaluation at the endpoints, the result would be as follows. $\int_0^2 (4x - x^2 - 2x) dx = \int_0^2 (2x - x^2) dx = 2 - \frac{1}{3}x^3 \Big _0^2 = 2 - \left(\frac{8}{3} - 0\right) = -\frac{2}{3}$ Then either the negative is ignored or the absolute value is taken, since area must be positive.			
(B)	Correct. The grand $x = 2$. The interval $0 \le x \le$ parabola and the of 4 at $x = 0$, where the region bound	ect. The graphs of $y = 2x$ and $y = 4x - x^2$ intersect when $x = 0$ $= 2$. The graph of $y = 4x - x^2$ lies above the graph $y = 2x$ on the all $0 \le x \le 2$. (One way to see this is to sketch a graph of the bla and the line, observing that the graph of $y = 4x - x^2$ has a slope at $x = 0$, while the graph of $y = 2x$ has a slope of 2.) The area of gion bounded by the two graphs is therefore $(x - x^2 - 2x) dx = \int_0^2 (2x - x^2) dx = \left(x^2 - \frac{x^3}{3}\right)\Big _0^2 = 4 - \frac{8}{3} = \frac{4}{3}.$		
(C)	Incorrect. This response might come from two different errors. This first is not finding where the two graphs intersect but looking only at the zeros of $y = 4x - x^2$ at $x = 0$ and $x = 4$, using those as the limits of integration to get $\int_0^4 \left(4x - x^2 - 2x\right) dx = \int_0^4 \left(2x - x^2\right) dx = \left(x^2 - \frac{x^3}{3}\right)\Big _0^4 = 16 - \frac{64}{3} = -\frac{16}{3},$ and then ignoring the negative (or taking the absolute value, since area must be positive). The response might also come from integrating only $y = 4x - x^2$ over the interval $0 \le x \le 2$, as follows. $\int_0^2 \left(4x - x^2\right) dx = \left(2x^2 - \frac{x^3}{3}\right)\Big _0^2 = 8 - \frac{8}{3} = \frac{16}{3}$			
(D)	Incorrect. This response might come from adding the two functions rather than taking the difference between them, as follows. $\int_0^2 (4x - x^2 + 2x) dx = \int_0^2 (6x - x^2) dx = \left(3x^2 - \frac{x^3}{3}\right)\Big _0^2 = 12 - \frac{8}{3} = \frac{28}{3}$			

Skill		Learning Objective	Topic	
1.E		FUN-3.B	The Quotient Rule	
(A)	Correct . The derivative of g is found using the quotient rule.			
		(3 (**))	n of f is used to determine that $f(2) = 3$ and	
	$f'(2) = \frac{7-3}{3-2} =$	= 4. Then $g'(2) = \frac{4f(2) - 4f(2)}{(f(2) - 4f(2))}$	$\frac{-f'(2)(5)}{(2))^2} = \frac{(4)(3) - (4)(5)}{9} = -\frac{8}{9}.$	
(B)	Incorrect. This response would result if the numerator of the derivative of the quotient was taken to be the product of the derivatives minus the product of the functions, as follows.			
	$g'(x) = \frac{2xf'(x) - f(x)(x^2 + 1)}{(f(x))^2} \Rightarrow g'(2) = \frac{4f'(2) - f(2)(5)}{(f(2))^2} = \frac{(4)(4) - (3)(5)}{9} = \frac{1}{9}$			
(C)	Incorrect. This response would result if the derivative of a quotient was taken to be the quotient of the derivatives, as follows.			
	$g'(x) = \frac{2x}{f'(x)} \Rightarrow g'(2) = \frac{4}{f'(2)} = \frac{4}{4} = 1$			
(D)	Incorrect. This response would result if the terms in the numerator were added rather than subtracted in the quotient rule, as follows.			
	$g'(x) = \frac{2xf(x)}{}$	$\frac{(f(x)(x^2+1))}{(f(x))^2} \Rightarrow g'(2)$	$=\frac{4f(2)+f'(2)(5)}{(f(2))^2}=\frac{(4)(3)+(4)(5)}{9}=\frac{32}{9}$	

Skill	Learning Objective Topic		Topic
1.E	FUN-6.A Applying Properties of Definite Integrals		
(A)	Correct. The function $f(x) = \frac{x^2 - x}{x}$ has a removable discontinuity at $x = 0$,		
	since $f(0)$ is u	ndefined but $\lim_{x\to 0} \frac{x^2 - x}{x} =$	$\lim_{x\to 0} (x-1) = -1.$ The definition of the
	definite integral	can be extended to function	ns with removable discontinuities. If
	g(x) = x - 1, then $g(x) = f(x)$ for all x except $x = 0$, and therefore		
	$\int_{-1}^{1} f(x) dx = \int_{-1}^{1} g(x) dx = \int_{-1}^{1} (x - 1) dx = \left(\frac{1}{2}x^{2} - x\right)\Big _{-1}^{1} = \left(\frac{1}{2} - 1\right) - \left(\frac{1}{2} + 1\right) = -2.$		
(B)	Incorrect. This response might arise from an assumption that the value of the definite integral is 0 because the integration is over the symmetric interval [-1, 1].		
(C)	Incorrect. The antiderivative of a quotient might have been taken to be the quotient of antiderivatives, as follows.		
	$\int_{-1}^1 \frac{x^2 - x}{x} dx =$	$= \frac{\frac{1}{3}x^3 - \frac{1}{2}x^2}{\frac{1}{2}x^2} \bigg _{-1}^{1} = \frac{\frac{1}{3} - \frac{1}{2}}{\frac{1}{2}}$	$\frac{1}{2} - \frac{-\frac{1}{3} - \frac{1}{2}}{\frac{1}{2}} = \frac{\frac{2}{3}}{\frac{1}{2}} = \frac{4}{3}$
(D)	Incorrect. This response might come from not recognizing that the definition of the definite integral can be extended to functions with removable discontinuities.		

Skill		Learning Objective	Topic
3.D		FUN-1.B	Using the Mean Value Theorem
(A)	Incorrect. This i	nterval might be chosen be	cause of an error in
	computing the a	verage rate of change over	the interval as
	$\frac{f(0)-f(4)}{4} =$	$\frac{8-0}{4} = 2 \text{ rather than } \frac{f(}{}$	$\frac{0) - f(4)}{0 - 4} = \frac{8 - 0}{-4} = -2.$
(B)	Incorrect. This i	nterval might be chosen be	cause of an error in
	computing the average rate of change over the interval as		
	$\frac{8-4}{f(8)-f(4)} =$	$\frac{4}{2-0} = 2 \text{ rather than } f($	$\frac{8) - f(4)}{8 - 4} = \frac{2 - 0}{4} = \frac{1}{2}.$
(C)	Correct. The function f is continuous on the closed interval [8, 12]		
	and differentiable on the open interval (8, 12). By the Mean Value		
	Theorem, there is a number c in the interval $(8, 12)$ such that		
	$f'(c) = \frac{f(12) - f(8)}{12 - 8} = \frac{10 - 2}{4} = 2.$		
(D)	Incorrect. This response would result if the Intermediate Value		
	Theorem was used instead of the Mean Value Theorem to select the		
	open interval (1	2, 16) where $f(c) = 2$ for	some number c in the
	interval.		

Skill		Learning Objective	Topic
1.E		LIM-4.A	Using L'Hospital's Rule for Finding Limits of Indeterminate Forms
(A)	Correct. Since	$\lim_{x \to 0} \sin x = 0 \text{ and } \lim_{x \to 0} \left(e^x - \frac{1}{x} \right)$	(-1) = 0, the
	indeterminate li follows.	mit can be evaluated using	L'Hospital's Rule, as
	$\lim_{x \to 0} \frac{\sin x}{e^x - 1} = \lim_{x \to 0} \frac{\cos x}{e^x} = \frac{\cos 0}{e^0} = \frac{1}{1} = 1$		
(B)	Incorrect. While using L'Hospital's Rule, an error might have been		
	made in the diff	ferentiation of e^x , treating it as if taking the	
	derivative of <i>ex</i> , as follows.		
	$\lim_{x \to 0} \frac{\sin x}{e^x - 1} = \lim_{x \to 0} \frac{\cos x}{e} = \frac{\cos 0}{e} = \frac{1}{e}$		
(C)	Incorrect. This response would result if the limit of the numerator		
	was observed to be 0, but the denominator was not taken into		r was not taken into
	consideration.		
(D)		response would result if the	
	was observed to be 0 while the numerator was not taken into		
	consideration, le	eading to the assumption th	nat the limit does not exist.

Skill		Learning Objective	Topic
2.C		FUN-7.F	Exponential Models with Differential Equations
(A)	Incorrect. The expression $12t$ might have been treated as if it was th velocity, not the acceleration. Therefore, the position was taken to be $s(t) = 6t^2 + C$, with $C = 5$ since $s(0) = 5$.		
(B)	Incorrect. This response might come from attempting to use the formula $s = \frac{1}{2}at^2 + v_0t + s_0$ for the position of an object falling with constant acceleration a , as follows. $s = \frac{1}{2}at^2 + v_0t + s_0 = \frac{1}{2}(12t)t^2 + 2t + 5 = 6t^3 + 2t + 5$		
(C)	Incorrect. The initial velocity might not have been considered during the antidifferentiation of the acceleration, as follows. $a(t) = 12t \Rightarrow v(t) = 6t^2$ $v(t) = 6t^2 \Rightarrow s(t) = 2t^3 + C$; $s(0) = 5 \Rightarrow 5 = 0 + 0 + C \Rightarrow C = 5$		
(D)	$s(0) = 5 \Rightarrow 5 = 0 + 0 + C \Rightarrow C = 5$ Correct. Since the acceleration is given, the position can be found using antidifferentiation and the values of the velocity and position at time $t = 0$. $a(t) = 12t \Rightarrow v(t) = 6t^2 + C_1$; $v(0) = 2 \Rightarrow 2 = 0 + C_1 \Rightarrow C_1 = 2$ $v(t) = 6t^2 + 2 \Rightarrow s(t) = 2t^3 + 2t + C_2$; $s(0) = 5 \Rightarrow 5 = 0 + 0 + C_2 \Rightarrow C_2 = 5$ The position of the particle is $s(t) = 2t^3 + 2t + 5$ for $t \ge 0$.		

Skill		Learning Objective	Topic
			Connecting Differentiability and
2.0		ELINI 2 A	Connecting Differentiability and
3.C		FUN-2.A	Continuity - Determining When
	C (T):	1: 1	Derivatives Do and Do Not Exist
(A)	Correct. This st		
		$ \underset{>5^{-}}{\text{m}} \left(-x^2 + 3 \right) = -25 + 3 = -25 + 25 + 25 + 25 + 25 + 25 + 25 + 25 $	
	$\lim_{x \to 5^+} f(x) = \lim_{x \to 5^+}$	$ \underset{\Rightarrow 5^{+}}{\text{m}} \left(-10x + 28 \right) = -50 + 28 $	3 = -22
	Therefore, $\lim_{x\to 5}$	$f(x)$ exists and $\lim_{x \to 5} f(x) =$	= -22 = f(5), so f is continuous at
	x=5.		
	$\lim_{h \to 0^-} \frac{f(5+h)}{h}$	$\frac{-f(5)}{h \to 0^{-}} = \lim_{h \to 0^{-}} \frac{-(5+h)^{2} + h}{h}$	$\frac{+3 - (-22)}{h} = \lim_{h \to 0^{-}} \frac{-10h - h^{2}}{h} = -10$
	$\lim_{h \to 0^+} \frac{f(5+h)}{h}$	$\frac{-f(5)}{-f(5)} = \lim_{h \to 0^+} \frac{-10(5+h)}{-f(5)}$	$\frac{+28 - (-22)}{h} = \lim_{h \to 0^+} \frac{-10h}{h} = -10$
	Therefore, f is also differentiable at $x = 5$ and $f'(5) = -10$. An alternative way		
	to see that the piecewise-defined function f is differentiable at $x = 5$ is to		
	observe that $f'(x) = \begin{cases} -2x & \text{for } x < 5 \\ -10 & \text{for } x > 5. \end{cases}$ Since f is continuous at $x = 5$ and the		
	derivatives $-2x$ and -10 are equal at $x = 5$, f is differentiable at $x = 5$.		
(B)	Incorrect. This s	statement is false. The func	f is both continuous and
	differentiable at	$x = 5$ because $\lim_{x \to 5^{-}} f(x)$	$= \lim_{x \to 5^{+}} f(x) = f(5) = -22 \text{ and}$
	$\lim_{h \to 0^{-}} \frac{f(5+h) - f(5)}{h} = \lim_{h \to 0^{+}} \frac{f(5+h) - f(5)}{h} = -10.$		
(C)	Incorrect. This s	statement is false, since if j	f is differentiable at $x = 5$, it must also
	be continuous at $x = 5$.		
(D)	Incorrect. This statement is false. The function f is both continuous and		f is both continuous and
	differentiable at	$x = 5$ because $\lim_{x \to 5^{-}} f(x)$	$= \lim_{x \to 5^{+}} f(x) = f(5) = -22 \text{ and}$
		$\frac{-f(5)}{h} = \lim_{h \to 0^+} \frac{f(5+h) - h}{h}$	

Skill		Learning Objective	Торіс
1.E		FUN-7.D	Finding General Solutions Using Separation of Variables
(A)	Incorrect. This response would result if a chain rule error was made during the antidifferentiation of the dy term. $\frac{dy}{dx} = 2 - y \Rightarrow \frac{dy}{2 - y} = dx$ $\int \frac{1}{2 - y} dy = \int dx \Rightarrow \ln 2 - y = x + C$ $\ln 1 = 1 + C \Rightarrow C = -1$ $\ln 2 - y = x - 1 \Rightarrow 2 - y = e^{x - 1}$		
	$2 - y = e^{x-1}$, o	at the initial value $y = 1$, $y = 2 - e^{x-1}$.	
(B)	Correct. The differential equation can be solved using separation of variables and the initial condition to determine the appropriate value for the arbitrary constant. $\frac{dy}{dx} = 2 - y \Rightarrow \frac{dy}{2 - y} = dx$ $\int \frac{1}{2 - y} dy = \int dx \Rightarrow -\ln 2 - y = x + C$ $-\ln 1 = 1 + C \Rightarrow C = -1$ $-\ln 2 - y = x - 1 \Rightarrow \ln 2 - y = -x + 1 \Rightarrow 2 - y = e^{1-x}$ Since $2 - y > 0$ at the initial value $y = 1$, the solution to the		
(C)	differential equation is $2 - y = e^{1-x}$, or $y = 2 - e^{1-x}$. Incorrect. This response would result if an arbitrary constant was not included during the antidifferentiation. $\frac{dy}{dx} = 2 - y \Rightarrow \frac{dy}{2 - y} = dx$ $\int \frac{1}{2 - y} dy = \int dx \Rightarrow -\ln 2 - y = x \Rightarrow 2 - y = e^{-x}$ Since $2 - y > 0$ at the initial value $y = 1$, the solution would be $2 - y = e^{-x}$, or $y = 2 - e^{-x}$.		
(D)	included during taken for the above $\frac{dy}{dx} = 2 - y \Rightarrow$	$\int dx \Rightarrow -\ln 2 - y = x \Rightarrow x $	I the incorrect sign was or y .

Skill		Learning Objective	Topic
			Interpreting the Behavior of
2.B		FUN-5.A	Accumulation
			Functions Involving
	<u>, </u>		Area
(A)		s the x -coordinate of a crit on of the graph of g . The e	
	* *	(x-14) = (x+2)(x-7) = 0	_
	for x rather tha	n the equation $g''(x) = 2x$	-5=0.
(B)	Correct. To find	d the point of inflection of t	he graph of g , determine
	where g'' changes sign.		
	$g'(x) = x^2 - 5x - 14$		
	g''(x) = 2x - 5		
	Then $g''(x) = 0$ at $x = \frac{5}{2}$. Since $g''(x) < 0$ for $x < \frac{5}{2}$ and		0 for $x < \frac{5}{2}$ and
	$g''(x) > 0$ for $x > \frac{5}{2}$, the graph of g changes concavity at $x = \frac{5}{2}$		nges concavity at $x = \frac{5}{2}$
	and therefore, the graph of g has a point of inflection at $x = \frac{5}{2}$.		
(C)	Incorrect. This i	is a value of x where $g(x)$	= 0, not a value where
	g''(x)=0.		
(D)	Incorrect. This i	is the x -coordinate of a crit	tical point of g, not of a
	point of inflection	on of the graph of g . The ed	quation
	$g'(x) = x^2 - 5x$	(x-14) = (x+2)(x-7) = 0	might have been solved
	for x rather tha	In the equation $g''(x) = 2x$	-5=0.

Skill		Learning Objective	Topic
1.E		FUN-3.B	The Product Rule
(A)		•	chain rule was correctly used
	as $\frac{d}{dx}(f(x)g(x))$	f'(x)g'(x).	
	$3x^2 \cdot (2\sec(2x))$	tan(2x)	
(B)	Incorrect. This is	esponse would result if the	product rule was correctly
	used but the der	ivative of $sec(2x)$ was take	en to be $2\tan^2(2x)$.
	$x^{3} \cdot \frac{d}{dx}(\sec(2x)) + 3x^{2} \cdot \sec(2x) = x^{3} \cdot (\tan^{2}(2x) \cdot 2) + 3x^{2} \sec(2x)$		
(C)	Incorrect. This response would result if the product rule was correctly		
	used but the chain rule was not used for the derivative of $sec(2x)$.		
	$x^{3} \cdot \frac{d}{dx}(\sec(2x)) + 3x^{2} \cdot \sec(2x) = x^{3} \cdot (\sec(2x)\tan(2x)) + 3x^{2}\sec(2x)$		
(D)	Correct. A combination of the product rule and the chain rule is used to		
	compute the derivative.		
	$\frac{d}{dx}(x^3\sec(2x)) = x^3 \cdot \frac{d}{dx}(\sec(2x)) + 3x^2 \cdot \sec(2x)$		
	$= x^3 \cdot (\sec(2x))$	$\tan(2x) \cdot 2) + 3x^2 \sec(2x)$	
	$=2x^3\sec(2x)\tan^2(2x)$	$n(2x) + 3x^2 \sec(2x)$	

Skill		Learning Objective	Topic
2.B		CHA-3.B	Straight-Line Motion: Connecting Position, Velocity, and Acceleration
(A)	Correct. The velocity of the particle is $v(t) = 3t^2 - 8t + 4$. At time $t = 1$, $v(1) = -1$. Since the velocity is negative, the particle is moving		
	down the y-axis. The rate of change of the velocity is $v'(t) = 6t - 8$. At time $t = 1$, $v'(1) = -2$. Since this is negative, the particle is moving with decreasing velocity at time $t = 1$.		
(B)	Incorrect. It was correctly determined that the particle is moving down the y -axis, but since $v'(t) = 6t - 8$ and $v'(1) = -2$, the particle's velocity is decreasing, not increasing.		
(C)	Incorrect. It was correctly determined that the particle is moving with decreasing velocity, but since $v(t) = 3t^2 - 8t + 4$ and $v(1) = -1$, the particle is moving down the <i>y</i> -axis, not up the axis.		
(D)	Incorrect. Since $v(t) = 3t^2 - 8t + 4$ and $v(1) = -1$, the particle is moving down the y -axis, not up the axis. Since $v'(t) = 6t - 8$ and $v'(1) = -2$, the particle's velocity is decreasing, not increasing.		

Skill		Learning Objective	Topic
1.C		FUN-6.A	Applying Properties of Definite Integrals
(A)	Incorrect. The value of this integral can be determined using the properties of the definite integral, as follows. $\int_{1}^{1} g(x) dx = -\int_{1}^{4} g(x) dx = -(-2) = 2$		
(B)	Incorrect. The value of this integral can be determined using the properties of the definite integral, as follows. $\int_{1}^{4} 3f(x) dx = 3 \cdot \int_{1}^{4} f(x) dx = 3 \cdot 8 = 24$		
(C)	$\int_{1}^{4} 3f(x)g(x) dx$ values of $\int_{1}^{4} f(x) dx$ the value of $\int_{1}^{4} 3f(x)g(x) dx$ $g(x) = -\frac{2}{3}, \text{ the}$ $\int_{1}^{4} 3f(x)g(x) dx$ $f(x) = \frac{16}{9}(x - \frac{1}{3}) dx$ and $\int_{1}^{4} g(x) dx$	It true in general that $f(x) = \int_{1}^{4} 3f(x) dx \cdot \int_{1}^{4} g(x) dx$ and $\int_{1}^{4} g(x) dx$ cannot $f(x) g(x) dx$. For example, $f(x) g(x) dx = 8$, $\int_{1}^{4} g(x) dx = 16$. However, $f(x) = -16$ and $f(x) = -16$ are $f(x) = -16$. However, $f(x) = -16$ are $f(x) = -16$ and $f(x) = -16$ are $f(x) = -16$ are $f(x) = -16$ and $f(x) = -16$ are $f(x) = -16$ are $f(x) = -16$ and $f(x) = -16$ are	ot be used to determine $f(x) = \frac{8}{3}$ and $f(x) = -2$, and wever, if $f(x) = 4$, then $\int_{1}^{4} f(x) dx = 8$
(D)	properties of the $\int_{1}^{4} (3f(x) + g(x))^{2} dx$	alue of this integral can be a definite integral, as follows: $f(x) = \int_{1}^{4} 3f(x) dx + \int_{1}^{4} g(x) dx = 3 \cdot 8 + (-2)f(x) dx $	s. $g(x) dx$

Skill		Learning Objective	Topic
1.D		CHA-2.B	Defining the Derivative of a Function and Using Derivative Notation
(A)	Incorrect. This response might come from observing that the numerator is zero when $h = 0$ without consideration of the denominator.		
(B)	Incorrect. This response might come from observing that both the numerator and the denominator are zero when $h = 0$ and interpreting $\frac{0}{0}$ as equal to 1.		
(C)	Incorrect. This response would result if the limit of the difference quotient was correctly recognized as the derivative of the function $f(x) = \sin(2x)$, but the chain rule was not used in finding the derivative.		
(D)	Correct. The limit of this difference quotient is of the form $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}, \text{ where } f(x) = \sin(2x). \text{ This is one way to express the derivative of } f. \text{ By the chain rule, } f'(x) = \cos(2x) \cdot 2.$		

Skill		Learning Objective	Topic		
2.D		FUN-7.C	Sketching Slope Fields		
(A)	Incorrect. This response might be chosen because the slopes for the				
	differential equation $\frac{dy}{dx} = x + y $ are nonnegative, which matches				
	the behavior sho	own in the slope field. How	ever, the segments in the		
	_	y = 0 all have slope 0 and	nd that would not be true		
	for this different	-			
(B)		response might be chosen be ight match the behavior of			
	$f(x) = x^3$. How	wever, the slopes of the segr	ments in the slope field		
	depend only on	the variable y and that wo	uld not be true for the		
	differential equa	ation $\frac{dy}{dx} = x^3$.			
(C)	Incorrect. This r	esponse might be chosen b	ecause the slopes for the		
	differential equation $\frac{dy}{dx} = y^3$ depend only on the variable y and				
	have the value 0 when $y = 0$, which matches the behavior shown in				
	the slope field. However, the segments in the slope field all have nonnegative slopes and that would not be true for this differential				
	_	quation when $y < 0$.			
(D)	Correct . The segments in the slope field suggest that (1) the slopes				
	- ,	the variable y , (2) the slop	•		
	(3) the slopes are zero when $y = 0$. The differential equation				
	$\frac{dy}{dx} = y^2$ satisfies all three conditions. The differential equation				
	$\frac{dy}{dx} = x + y $ does not satisfy conditions (1) and (3). The differential				
	equation $\frac{dy}{dx} = x^3$ does not satisfy any of the conditions. The				
		ation $\frac{dy}{dx} = y^3$ does not sati	isfy condition (2) when		
	y < 0.				

Skill		Learning Objective	Topic
1.E		CHA-5.B	Volumes with Cross Sections - Squares and Rectangles
(A)	Incorrect. This response is the area of the region, not the volume of the solid. $\int_0^1 e^x \ dx = e^x \Big _0^1 = e - 1$		
(B)	Correct. The area of a square of side length s is s^2 . A typical cross section of the solid is a square with side from the x -axis to the graph of $y = e^x$. The length of the side of the square is therefore $s = e^x$, so the area of the square is $\left(e^x\right)^2 = e^{2x}$. The volume of the solid is found using the definite integral of the cross-sectional area. $\int_0^1 e^{2x} dx = \frac{1}{2} e^{2x} \Big _0^1 = \frac{1}{2} e^2 - \frac{1}{2}$		
(C)	Incorrect. This response would result if the volume was set up correctly as the definite integral of the cross-sectional area e^{2x} , but an error was made in the antidifferentiation by not considering the chain rule, as follows. $\int_0^1 e^{2x} dx = e^{2x} \Big _0^1 = e^2 - 1$		
(D)	Incorrect. This response would result if the volume was set up correctly as the definite integral of the cross-sectional area e^{2x} , but an error was made with respect to the chain rule in the antidifferentiation of the exponential function (or the integrand was differentiated rather than antidifferentiated), as follows. $\int_0^1 e^{2x} dx = 2e^{2x} \Big _0^1 = 2e^2 - 2$		

Skill		Learning Objective	Topic
3.D		FUN-6.B	The Fundamental Theorem of Calculus and Definite Integrals
(A)		Fundamental Theorem of $f(12) - f(0) = (-4) - 4 =$	
	f at $x = 0$ and	1 x = 12 are obtained from	the graph.
(B)	Incorrect. This response would result if the function f was integrated over the interval $[0, 12]$ rather than f' , as follows. $\int_0^{12} f(x) dx = \frac{1}{2}(4)(4) - \frac{1}{2}(4)(3) - \frac{1}{2}(4)(4) = -6$		
(C)	Incorrect. This response would result if the Fundamental Theorem of Calculus was incorrectly applied, as follows. $\int_0^{12} f'(x) dx = f'(12) - f'(0) = (-1) - (-1) = 0$		
(D)	Incorrect. This response is the total area bounded by the graph of f and the x -axis over the interval $[0, 12]$. $\int_0^{12} f(x) dx = \frac{1}{2}(4)(4) + \frac{1}{2}(4)(3) + \frac{1}{2}(4)(4) = 8 + 6 + 8 = 22$		

Skill		Learning Objective	Topic
3.G		FUN-7.B	Verifying Solutions for Differential Equations
(A)	Correct. One way to verify that a function is a solution to a differential equation is to check that the function and its derivatives satisfy the differential equation. The differential equation in this option involves y and y' . The correct derivative must be computed and the algebra correctly done to verify that the differential equation is satisfied. $y' = 12e^{6x}$ $y' - 6y - 30 = 12e^{6x} - 6(2e^{6x} - 5) - 30 = 12e^{6x} - 12e^{6x} + 30 - 30 = 0$		
(B)	Incorrect. The correct derivative was found, but this differential equation will appear to be satisfied if the 12 in the second term is not distributed correctly across the two terms in the parentheses, as follows. $y' = 12e^{6x}$ $2y' - 12y + 5 = 24e^{6x} - 12(2e^{6x} - 5) + 5 = 24e^{6x} - 24e^{6x} + 5 - 5 = 0$		
(C)	Incorrect. This differential equation has $y = 2e^{6x}$ as a solution, not $y = 2e^{6x} - 5$. Both functions have $y' = 12e^{6x}$ and $y'' = 72e^{6x}$, but $72e^{6x} - 5(12e^{6x}) - 6(2e^{6x}) = 0$, whereas $72e^{6x} - 5(12e^{6x}) - 6(2e^{6x} - 5) = 30$.		
(D)	Incorrect. This differential equation will appear to be satisfied if the chain rule is not used in taking the derivative of the exponential, as follows. $y' = 2e^{6x} \ y'' = 2e^{6x}$ $y'' - 2y' + y + 5 = 2e^{6x} - 2(2e^{6x}) + (2e^{6x} - 5) + 5 = 2e^{6x} - 4e^{6x} + 2e^{6x} - 5 + 5 = 0$		

Skill		Learning Objective	Topic	
3.D		FUN-4.A	Using the Candidates Test to Find Absolute (Global) Extrema	
(A)		Incorrect. This response would result if the critical point was not found, and the endpoint with the smallest function value was selected.		
(B)	Correct. The absolute minimum will occur at a critical point or one of the endpoints. $y' = 4x^{\frac{1}{3}} - 2 = 0 \Rightarrow x^{\frac{1}{3}} = \frac{1}{2} \Rightarrow x = \left(\frac{1}{2}\right)^3 = \frac{1}{8}$ The candidates are $x = 0$, $x = \frac{1}{8}$, and $x = 1$. When $x = 0$, $y = 0$. When $x = \frac{1}{8}$, $y = 3\left(\frac{1}{8}\right)^{\frac{4}{3}} - 2\left(\frac{1}{8}\right) = \frac{3}{16} - \frac{1}{4} = -\frac{1}{16}$. When $x = 1$, $y = 1$. The absolute minimum is therefore at $x = \frac{1}{8}$. Alternatively, since $x = \frac{1}{8}$ is the only critical point and the Second Derivative Test shows that it is the location of a local minimum, it must also be the location of the absolute minimum on the interval			
(C)	Incorrect. This response would result if an error in the power rule has the derivative being computed as $y' = 4x - 2$ with a zero at $x = \frac{1}{2}$. It was concluded that this was the location of a local minimum from the Second Derivative Test and therefore had to be the location of the absolute minimum, since it was the only critical point in the interval $[0, 1]$. (Note that $y(\frac{1}{2}) = 3(\frac{1}{16})^{\frac{1}{3}} - 1$ and it is not obvious whether this value is smaller or greater than $y(0) = 0$, so it would have been difficult to use the Candidates Test. The y -value at $x = \frac{1}{2}$ is actually			
(D)	positive.) Incorrect. This is occurs on the in	is the value of x at which the terval $[0, 1]$.	the maximum value of y	

Skill		Learning Objective	Topic
3.F		CHA-3.A	Interpreting the Meaning of the Derivative in Context
(A)	W(t). Therefor	ate at which the depth of the e, this sentence is an interpart interpretation about $W'($	retation of the statement
(B)	Incorrect. The rate at which the depth of the water is increasing in $W(t)$. Therefore, this sentence is an interpretation of the statem $W(t) > 3$ for all t in the interval $0 \le t \le 2$.		retation of the statement
(C)	Correct . In the expression $W'(2)$, the 2 represents the value of the independent variable and is therefore the number of hours since the tank began filling with water. $W'(2)$, being the value of a derivative is the rate of change of W , that is, the rate of change of the rate at which the depth of the water is rising; in this case, 2 hours after the tank begins filling with water. The units for the derivative would be the units of W per unit of time; thus, feet per hour per hour. The statement says that at time 2 hours after the tank begins filling with water, the rate at which the depth of the water is rising, $W(t)$, is		umber of hours since the g the value of a derivative, of change of the rate at is case, 2 hours after the the derivative would be per hour per hour. The se tank begins filling with
(D)	Incorrect. This sentence is an interpretation of the statement $W'(t) > 3$ for all t in the interval $0 \le t \le 2$. $W'(2)$, being the value of a derivative, is the instantaneous rate of change of W at the particular instant $t = 2$.		

Question	Question 28				
Skill		Learning Objective	Topic		
1.E		CHA-3.E	Solving Related Rates Problems		
(A)	Incorrect. This response would result if the relationship $\tan \theta = \frac{h}{30}$				
	was correctly used, where h is the height of the balloon above the point P at time t , but then the derivative of $\tan \theta$ was taken to be				
	$\sec \theta \tan \theta$ rather than $\sec^2 \theta$.				
	$\sec\theta\tan\theta\frac{d\theta}{dt} =$	$=\frac{1}{30}\frac{dh}{dt}$			
		hen $h = 40$, the distance fr	rom the person to the		
		$\overline{+40^2} = \sqrt{2500} = 50.$ $= \frac{1}{30} \cdot 2 = \frac{1}{15} \Rightarrow \frac{d\theta}{dt} = \frac{1}{15}$	$\frac{3}{5} \cdot \frac{3}{4} = \frac{3}{100}$		
(B)	(30)(30) 41	is the height of the balloon	3 1 100		
, ,		$\theta = \frac{h}{30}$. Using implicit di			
	to t shows that	$\sec^2 \theta \frac{d\theta}{dt} = \frac{1}{30} \frac{dh}{dt}$. At the	e instant when $h = 40$, the		
	distance from th	ne person to the balloon is			
	$\sqrt{30^2 + 40^2} = \sqrt{2500} = 50$. At this instant, $\sec \theta = \frac{50}{30} = \frac{5}{3}$ and				
	therefore $\left(\frac{5}{3}\right)^2 \frac{d\theta}{dt} = \frac{1}{30} \cdot 2 = \frac{1}{15} \Rightarrow \frac{d\theta}{dt} = \frac{1}{15} \cdot \frac{9}{25} = \frac{3}{125}.$				
(C)	Incorrect. This response would result if the relationship $\tan \theta = \frac{h}{30}$				
	was correctly used, where h is the height of the balloon above the point P at time t , but then the derivative of $\tan \theta$ was taken to be				
	sin θ rather than $\sec^2 \theta$.				
	$\sin \theta \frac{d\theta}{dt} = \frac{1}{30}$				
	<i>ui</i> 50	then $h = 40$, the distance fr	com the person to the		
	balloon is $\sqrt{30^2}$	$+40^2 = \sqrt{2500} = 50.$			
	$\left(\frac{40}{50}\right)\frac{d\theta}{dt} = \frac{1}{30}$	$2 = \frac{1}{15} \Rightarrow \frac{d\theta}{dt} = \frac{1}{15} \cdot \frac{5}{4} =$	$\frac{1}{12}$		
(D)	Incorrect. This response would result if the relationship $\tan \theta = \frac{h}{30}$				
	was correctly used, where h is the height of the balloon above the point P at time t , but then the derivative of $\tan \theta$ was taken to be				
	$\cos^2\theta$ rather th				
	$\cos^2\theta \frac{d\theta}{dt} = \frac{1}{30}$	$-\frac{dh}{dt}$			
		$\frac{hen h}{h} = 40$, the distance fr	rom the person to the		
		$+40^2 = \sqrt{2500} = 50.$			
	$\left(\frac{30}{50}\right)^2 \frac{d\theta}{dt} = \frac{1}{30}$	$\cdot \cdot 2 = \frac{1}{15} \Rightarrow \frac{d\theta}{dt} = \frac{1}{15} \cdot \frac{25}{9}$	$\cdot = \frac{5}{27}$		

Skill		Learning Objective	Topic
2.B		LIM-2.D	Connecting Infinite Limits and Vertical Asymptotes
(A)	for $x \neq 2$, the g		$\frac{(x-2)(x^2+4)}{(x+2)(x^2+4)} = \frac{1}{(x+2)(x^2+4)}$ asymptote, which is at $x = -2$. The
(B)	Incorrect. The denominator is $x^4 - 16 = (x^2 - 4)(x^2 + 4) = (x - 2)(x + 2)(x^2 + 4)$ which has two zeros, which might lead to the conclusion that there are two vertical asymptotes.		
(C)	Incorrect. The expression might have been correctly simplified to $\frac{x-2}{x^4-16} = \frac{x-2}{\left(x^2-4\right)\left(x^2+4\right)} = \frac{x-2}{(x-2)(x+2)\left(x^2+4\right)} = \frac{1}{(x+2)\left(x^2+4\right)}$ for $x \ne 2$, but then the conclusion was made that there are three vertical asymptotes because the denominator is a cubic polynomial.		
(D)	Incorrect. Since the denominator is a quartic polynomial, the assumption might have been made that there are four zeros and therefore four vertical asymptotes.		

Skill		Learning Objective	Topic
3.D		LIM-5.C	Riemann Sums, Summation Notation, and Definite Integral Notation
(A)	Incorrect. The s	um can be interpreted as a	right Riemann sum in the
	form $\sum_{k=1}^{n} f(1+k)$	$(x\Delta x)\Delta x$, where $f(x) = x^2$	and $\Delta x = \frac{2}{n}$. The value
		nds to an interval of length	2, but <i>b</i> is not equal to
	2 because the in	nterval starts at $x = 1$.	
(B)	Correct . The su	m can be interpreted as a ri	ght Riemann sum in the
	form $\sum_{k=1}^{n} f(1 + k\Delta x)\Delta x$, where $f(x) = x^2$ and $\Delta x = \frac{2}{n}$. The value of Δx corresponds to an interval of length 2. The sum starts with the right endpoint $1 + \Delta x$ and ends with the right endpoint $1 + n\Delta x = 1 + 2 = 3$, so the Riemann sum is over the interval [1, 3]. The limit of the Riemann sum is the definite integral $\int_{1}^{3} f(x) dx$.		
	There could not be another value of b for which $\int_1^b x^2 dx$ has the		- 1
	same value as $\int_{1}^{3} x^{2} dx$ since $I(b) = \int_{1}^{b} x^{2} dx$ is a strictly increasing		dx is a strictly increasing
	function of <i>b</i> . T	Therefore, $b = 3$ is the only	choice.
(C)	Incorrect. Suppose the value of the limit is <i>A</i> . The equation		<i>A</i> . The equation
	$A = \int_{1}^{b} x^{2} dx = \frac{b^{3}}{3} - \frac{1}{3}$ has only one solution, $b = (3A + 1)^{\frac{1}{3}}$.		
	Therefore, b co	ould not be any real number	
(D)	Incorrect. This	response might come from	believing that the limit
	does not exist si	nce it involves an infinite su	ummation.

Skill		Learning Objective	Topic
2.E		FUN-4.A	Determining Intervals on Which a Function Is Increasing or Decreasing
(A)	Incorrect. The graph of f is concave up where f' is increasing. This response might come from switching the roles of the function and its derivative and thinking that f is increasing where the graph of f' is concave up. The graph of f' is concave up on the interval: $(0,1)$ and $(2,4)$.		
(B)	Incorrect. This response might come from treating the given graph as the graph of f rather than the graph of f' . These are the two intervals where f' is increasing.		
(C)	Incorrect. These are the intervals where both f and f' are increasing.		
(D)	Correct. The function f is increasing on closed intervals where f' is positive on the corresponding open intervals. The graph indicates that $f'(x) > 0$ on the intervals $(0, 2)$ and $(4, 5)$, so f is increasing on the intervals $[0, 2]$ and $[4, 5]$.		

Skill		Learning Objective	Topic
1.E		CHA-3.B	Straight-Line Motion: Connecting Position, Velocity, and Acceleration
(A)	Incorrect. This response is the acceleration of the object at time $t = 3$.		of the object at time
(B)	Correct . The velocity is the derivative of the height. Using the calculator, $v(3) = h'(3) = 7.778$.		
(C)	Incorrect. This response is the height of the object at time $t = 3$.		
(D)	Incorrect. This response is the value of $\int_{1}^{3} h(t) dt$.		

Skill		Learning Objective	Topic
1.E		CHA-3.F	Approximating Values of a Function Using Local Linearity and Linearization
(A)	Correct. An equation of the line tangent to the graph of g at $x = a$ is $y = g(a) + g'(a)(x - a)$. In this question, $a = -1$. The value of y when $x = -1.2$ would be an approximation to $g(-1.2)$. $g(-1.2) \approx g(-1) + g'(-1)(-1.2 - (-1)) = 4 + 2(-0.2) = 3.6$		
(B)	Incorrect. This response would result if the derivative was not used as the slope of the tangent line, as follows. $g(-1.2) \approx g(-1) + \Delta x = 4 + (-0.2) = 3.8$		
(C)	Incorrect. This response would result if the derivative was not used as the slope of the tangent line, and Δx was taken to be 0.2 rather than -0.2 , as follows. $g(-1.2) \approx g(-1) + \Delta x = 4 + 0.2 = 4.2$		
(D)	Incorrect. During the evaluation of the change in y along the tangent line, the change in x was incorrectly taken to be 0.2 rather than -0.2 , as follows. $g(-1.2) \approx g(-1) + \Delta y = g(-1) + g'(-1)\Delta x = 4 + 2(0.2) = 4.4$		

Skill		Learning Objective	Topic
3.F		CHA-4.B	Finding the Average Value of a Function on an Interval
(A)		efinite integral was not divi	ided by the length of the
(B)	Correct. The average value of a function f over an interval $[a, b]$ is $\frac{1}{b-a} \int_a^b f(x) dx$. Tara's average heart rate from $t=30$ to $t=60$ is the average value of the function h over the interval $[30, 60]$ and would therefore be given by the expression $\frac{1}{60-30} \int_{30}^{60} h(t) dt$.		
(C)	Incorrect. This response is the average rate of change of Tara's heart rate from $t = 30$ to $t = 60$, not the average of her heart rate over that interval. By the Fundamental Theorem of Calculus, this expression is equal to $\frac{h(60) - h(30)}{60 - 30}$.		
(D)	Incorrect. This response is the average of the rate of change of Tara's heart rate at the two times $t = 30$ and $t = 60$, not the average of her heart rate over the interval from $t = 30$ to $t = 60$.		60, not the average of her

Skill		Learning Objective	Topic
1.E		FUN-6.B	The Fundamental Theorem of Calculus
			and Definite Integrals
(A)	Incorrect. This	response comes from taking	
	g(5) = g(2) + g(3)	g'(5) = -7 + g'(5) = 4.402	
(B)	Incorrect. This	response is the value of $g'($	5), not the value of $g(5)$.
(C)	Correct. By the Fundamental Theorem of Calculus,		
	$g(5) - g(2) = \int_2^5 g'(x) dx$. Therefore,		
	$g(5) = g(2) + \int_2^5 \sqrt{x^3 + x} \ dx = -7 + \int_2^5 \sqrt{x^3 + x} \ dx = 13.899,$		
	where the evaluation of the definite integral is done with the calculator.		
(D)	Incorrect. This response would result if the initial condition was not		
	included in the computation, resulting in		
	$g(5) = \int_2^5 \sqrt{x^3} -$	+ x dx = 20.899.	

Skill		Learning Objective	Topic
2.B		LIM-2.A	Exploring Types of Discontinuities
(A)	Incorrect. The function corresponding to this graph has a jump discontinuity at $x = 3$, not a removable one, because $\lim_{x \to 3^{-}} f(x) \neq \lim_{x \to 3^{+}} f(x).$		
(B)	Incorrect. The function corresponding to this graph has a jump discontinuity at $x = 3$, not a removable one, because $\lim_{x \to 3^{-}} f(x) \neq \lim_{x \to 3^{+}} f(x).$		
(C)	Correct. A removable discontinuity occurs at $x = c$ if $\lim_{x \to c} f(x)$ exists, but $f(c)$ does not exist or is not equal to the value of the limit. This graph could be the graph of f since $\lim_{x \to 3} f(x)$ exists but is not equal to $f(3)$.		
(D)	Incorrect. The function corresponding to this graph has a discontinuity at $x = 3$ due to a vertical asymptote, not a removable discontinuity.		

_	Question oz					
Skill		Learning Objective	Topic			
1.E		FUN-6.A	Applying Properties of Definite Integrals			
(A)	Correct. Using	tegrals over adjacent intervals,				
	$\int_0^{20} f(x) dx = \int_0^{17} f(x) dx + \int_{17}^{20} f(x) dx = 8 + (-3) = 5.$					
	Another applica	gives				
	$\int_0^{20} f(x) dx = \int_0^{20} f(x) dx$	$\Rightarrow \int_0^{13} f(x) dx = \int_0^{20} f(x) dx - \int_{13}^{20} f(x) dx.$				
	$\int_{13}^{20} f(x) dx = 5 - 7 = -2.$					
(B)	ntegrals over adjacent intervals,					
	$\int_0^{20} f(x) dx = \int_0^{13} f(x) dx + \int_{13}^{20} f(x) dx \Rightarrow \int_0^{13} f(x) dx = \int_0^{20} f(x) dx - \int_{13}^{20} f(x) dx.$					
	However, if \int_0^{20}	determined to be				
	1 rather than					
	$\int_0^{17} f(x) dx + \int_0^{17} f(x) dx + \int_0^{17} f(x) dx$	$\int_{17}^{20} f(x) dx = 8 + (-3) = 5$	5, the result would be as follows.			
	$\int_0^{13} f(x) dx = \int$	$\int_{0}^{20} f(x) dx - \int_{13}^{20} f(x) dx$	=11-7=4			
(C)	Incorrect. This	response would result if th	e property of definite integrals over adjacent			
		'	values of the three definite integrals might			
	have been added					
	$\int_0^{1/f} f(x) dx + \int_0^{1/f} f(x) dx$	$\int_{17}^{20} f(x) dx + \int_{13}^{20} f(x) dx$	= 8 + (-3) + 7 = 12			
(D)	Incorrect. The p	property of definite integra	als over adjacent intervals was not used			
			definite integrals were added, as follows.			
	$\left \left \int_0^{17} f(x) dx \right + \right $	$\left \int_{17}^{20} f(x) dx \right + \left \int_{13}^{20} f(x) dx \right $	dx = 8 + 3 + 7 = 18			

Skill		Learning Objective	Topic		
3.D		LIM-2.C	Removing		
3.D		LIMI-2.C	Discontinuities		
(A)	Correct . The limit at $x = 3$ exists if the left-hand and right-hand limits are equal. $\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x) \Rightarrow k^{3} + 3 = \frac{16}{k^{2} - 3}$ The solution to this equation for $k > 0$ is $k = 2.081$. With this value of k , $\lim_{x \to 3} f(x)$ exists and is equal to $f(3)$. Therefore, f is continuous at $x = 3$.				
(B)	Incorrect. This response comes from trying to make the left-hand and right-hand limits of the derivative equal at $x = 3$, as follows. $f'(x) = \begin{cases} 1 & \text{for } x < 3 \\ \frac{16}{\left(k^2 - x\right)^2} & \text{for } x > 3 \end{cases}$ $\lim_{x \to 3^-} f'(x) = \lim_{x \to 3^+} f'(x) \Rightarrow 1 = \frac{16}{\left(k^2 - 3\right)^2}$				
	The solution to	is $k = 2.646$.			
(C)	Incorrect. In trying to set the left-hand and right-hand limits of f equal at $x = 3$, the 3 might have been substituted for the parameter k rather than the variable x , as follows. $27 + x = \frac{16}{9 - x}$ The positive solution to this equation is $x = 8.550$.				
(D)	Incorrect. This response might come from errors that lead to an equation that has no positive solution. For example, it might come from trying to make the left-hand and right-hand limits of the derivative equal at $x = 3$ but also making a chain rule error in the derivative of the piece for $x > 3$, as follows. $f'(x) = \begin{cases} 1 & \text{for } x < 3 \\ \frac{-16}{\left(k^2 - x\right)^2} & \text{for } x > 3 \end{cases}$ $\lim_{x \to 3^-} f'(x) = \lim_{x \to 3^+} f'(x) \Rightarrow 1 = \frac{-16}{\left(k^2 - 3\right)^2}$ This equation has no solution for k .				

Skill		Learning Objective	Topic
3.D		FUN-1.A	Working with the Intermediate Value Theorem
(A)	Incorrect. By the Intermediate Value Theorem, the function f is guaranteed to have at least one zero, but it could have more. For example, the function $f(x) = \frac{2}{3}x^3 + 2x^2 - \frac{14}{3}x + 1$ satisfies the values in the table, but it has three zeros.		
(B)	Incorrect. The largest value of f in the table occurs at $x = 2$, but that does not guarantee that f has a relative maximum at $x = 2$. For example, the function $f(x) = \frac{2}{3}x^3 + 2x^2 - \frac{14}{3}x + 1$ satisfies the values in the table, but it does not have a relative maximum at $x = 2$ because $f'(2) > 0$.		
(C)	Correct. Since f is continuous on the closed interval $[-5, 2]$ and $f(-5) < 4 < f(2)$, then by the Intermediate Value Theorem there must be a value c in the open interval $(-5, 2)$ such that $f(c) = 4$.		
(D)	Incorrect. While it is true that $\frac{f(2) - f(-5)}{2 - (-5)} = \frac{14}{7} = 2$, the Mean Value Theorem cannot be used to claim that there exists a value c in the open interval $(-5, 2)$ such that $f'(c) = 2$ because there is no assumption that f is differentiable on the open interval $(-5, 2)$. Consider the function f defined as follows. $f(x) = \begin{cases} -9 & \text{for } x \le -1 \\ 10x + 1 & \text{for } -1 < x \le 0 \\ 4x + 1 & \text{for } 0 < x \le 1 \\ 5 & \text{for } x > 1 \end{cases}$ The graph of f goes through each of the points in the table, but none of the linear pieces of the graph has slope f .		

Question 85

Skill		Learning Objective	Topic
			Using the First
3.D		FUN-4.A	Derivative Test to Find
			Relative (Local) Extrema
(A)	Incorrect. This is	is a value of x where $f'(x)$	= g(x) = 0. But since
	the graph of $y =$	= g(x) goes from negative	to positive at this point,
	this would be a	local minimum for the grap	oh of $y = f(x)$, not a
	local maximum		
(B)	Incorrect. This is	is a value of x where $g'(x) = 0$, not where	
	f'(x) = g(x) =	= 0. It is the x -coordinate of a local maximum for	
	the graph of $y =$	= g(x), not for the graph of	f y = f(x).
(C)	Incorrect. This is	is a value of x where $g'(x)$	= 0, not where
	f'(x) = g(x) =	= 0. It is the x -coordinate of	of a local minimum for the
	graph of $y = g(x)$.		
(D)	Correct. A local maximum for the graph of $y = f(x)$ occurs at a		
	value of x when	f' = g changes from po	sitive to negative. The
	graph of $y = g($	(x) crosses the x -axis from	positive to negative at
	x = 3.140.		

Skill		Learning Objective	Topic
2.B		FUN-4.A	Connecting a Function, Its First Derivative, and Its Second Derivative
(A)	to $x = 2$, then of from $x = 3$ to $x = 3$ from $x = 0$ to $x = 3$ from $x = 3$ to $x = 3$ behavior, so it contains a local minimum of $x = 3$	raph of f indicates that f decreasing from $x = 2$ to $x = 5$. Therefore, the graph $x = 2$, negative from $x = 2$, respective from $x = 2$ and is different to the port this conclusion. Since the formula of f' is should not be defined at $x = 3$ and is different this graph is consistent with the properties of f' is should not be defined at f' is should not be defined at f' is graph is consistent with the properties of f' is should not be defined at f' is graph is consistent with the properties of f' is should not be defined at f' is graph is consistent with the properties of f' is a should not be defined at f' in the properties of f' is a should not be defined at f' in the properties of f' in the properties of f' is a should not be defined at f' in the properties of f' in the properties of f' is a should not be defined at f' in the properties of f' is a should not be defined at f' in the properties of f' interest of f' in the properties of f' in the properties of f'	x = 3, and then increasing of f' should be positive to $x = 3$, and positive y one that has this ome other features of the f is not differentiable at need at $x = 2$. Since f entiable there, $f'(3)$
(B)	Incorrect. This graph shows the correct sign for f' on the interval from $x = 0$ to $x = 2$. However, the sign of f' should be negative from $x = 2$ to $x = 3$ and positive from $x = 3$ to $x = 5$, since f changes from decreasing to increasing over the interval $(2, 5)$. That is the opposite of what is happening between $x = 2$ and $x = 5$ in this graph. In addition, the graph of f does not support the conclusion that $\lim_{x\to 2^-} f'(x) = \lim_{x\to 2^+} f'(x)$, as suggested in this graph		
(C)	from $x = 2$ to from $x = 0$ to $x = 0$ to $x = 2$	graph shows the correct sign $x = 5$. However, the sign o $x = 2$, not negative, since . In addition, the graph of $\lim_{x \to 2^{-}} f'(x) = \lim_{x \to 2^{+}} f'(x)$,	f f' should be positive f is increasing from f does not support the
(D)	from $x = 0$ to from $x = 3$ to in addition, the	graph shows the correct sign $x = 3$. However, the sign o $x = 5$, since f is increasing graph of f does not suppose as suggested in this graph	of f' should be positive g over the interval $(3, 5)$.

Skill		Learning Objective	Topic
1.E		CHA-4.C	Connecting Position, Velocity, and Acceleration Functions Using Integrals
(A)	direction from a value might have used for the lim. However, this re $0 < t < b$, not the second state of	s correctly determined that moving left to moving right to been stored in the calcula it of integration in order to esponse is the displacement the total distance traveled. $t\sin\left(t^3\right)dt = 0.212$	at $t = b = 1.84527$. This tor, and the stored value ensure accuracy.
(B)	Incorrect. The zero of $v(t)$ where the velocity changes from positive to negative was found to be $t=a=1.46459$. This value might have been stored in the calculator, and the stored value used for the limit of integration in order to ensure accuracy. This is the time when the particle changes direction from moving right to moving left, not from left to right. The total distance traveled by the particle during the time interval $0 < t < a$ is $\int_0^a v(t) dt = \int_0^{1.46459} t\sin(t^3) dt = 0.612.$		
(C)	that the velocity positive. The time moving left to make the velocity $t = b = 1.8452^{\circ}$ stored value for The total distant	aph of the velocity over the changes from positive to not need to which the particle chancoving right, therefore, is that the changes from negative to 7. Store this value in the call the limit of integration in the call the traveled by the particle depends on the control of the particle of	egative, then back to nges direction from he second zero of $v(t)$, to positive. This zero is at liculator, and use the order to ensure accuracy.
(D)	during the entir	response is the total distance time interval $0 < t < 2$. $ \left t \sin(t^3) \right dt = 1.208 $	e traveled by the particle

Skill		Learning Objective	Topic
1.E		CHA-3.A	Interpreting the Meaning of the Derivative in Context
(A)	average rate of cless than -0.5. Was correctly for change was take derivative. In either	response might be chosen if thange resulted in a value that would also be chosen if the und to be -0.39206 , but then to be the second derivative ther case, the resulting equanterval $[0, 1.565]$.	hat was greater than 0 or the average rate of change the instantaneous rate of the of f , not the first
(B)	Incorrect. This response would be chosen if the average rate of change was correctly found to be -0.39206 , but the graph of f , not f' , was drawn to determine the number of intersection points with the horizontal line $y = -0.39206$. It would also be chosen if the instantaneous rate of change was correctly identified as the derivative of f , but the average rate of change over the interval $[0, 1.565]$ was thought to be the average at the endpoints, $\frac{f(0) + f(1.565)}{2} = -0.30678$, or the average value of the function over the interval, $\frac{1}{1.565} \int_0^{1.565} f(x) dx = -0.32195$. In all these cases, the resulting equation would have only one solution in the interval $[0, 1.565]$.		
(C)	[0, 1.565] is $\frac{f(f)}{f(f)}$ of change of $f(f)$	erage rate of change of f of $\frac{(1.565) - f(0)}{1.565 - 0} = -0.39206$ is the derivative, $f'(x) = x$ oduced using the calculator 206 three times in the open	5. The instantaneous rate $x^3 - 2x^2 + x - \frac{1}{2}$. The spin intersects the horizontal
(D)	Incorrect. This is a polynomial of	response might be chosen b degree 4.	ecause the function f is

Skill		Learning Objective	Topic
3.E		FUN-4.A	Sketching Graphs of Functions and Their Derivatives
(A)	concave up beca (3, 12) and (5, increasing and of for $x > 5$. In pa value of y on the	raph of g is increasing because $g''(x) > 0$. The secant 18) is $y = 3(x - 3) + 12$. It concave up, the graph will 1 articular, the value of $g(6)$ he secant line at $x = 6$, that $(x + 2) + 12 = 21$. Therefore, $g(6)$	t line through the points Because the graph of g is ie above the secant line is strictly greater than the t is,
(B)	Correct . The graph of g is increasing because $g'(x) > 0$ and concave up because $g''(x) > 0$. The secant line through the points $(3,12)$ and $(5,18)$ is $y = 3(x-3)+12$. Because the graph of g is increasing and concave up, the graph will lie above the secant line for $x > 5$. In particular, the value of $g(6)$ is strictly greater than the value of $g(6) > 3(6-3)+12 = 21$. Therefore, 22 is the only possible value for $g(6)$.		
(C)	concave up beca (3, 12) and (5, increasing and c for $x > 5$. In pa value of y on the	raph of g is increasing because $g''(x) > 0$. The secant 18) is $y = 3(x - 3) + 12$. It concave up, the graph will 1 articular, the value of $g(6)$ are secant line at $x = 6$, that $(x + 1) + 12 = 21$. Therefore, $g(6)$	t line through the points Because the graph of g is ie above the secant line is strictly greater than the t is,
(D)	concave up beca (3, 12) and (5, increasing and c for $x > 5$. In pa value of y on the	raph of g is increasing because $g''(x) > 0$. The secant 18) is $y = 3(x - 3) + 12$. It concave up, the graph will 1 articular, the value of $g(6)$ he secant line at $x = 6$, that $(x + 2) + 12 = 21$. Therefore, $g(6)$	t line through the points Because the graph of g is ie above the secant line is strictly greater than the t is,

Skill		Learning Objective	Topic
1.E		FUN-3.E	Differentiating Inverse Functions
(A)	Incorrect. This	response would result if it w	vas correctly determined
	that $g(2) = f^{-1}$	1(2) = 3, but a sign error w	as made in taking
	$g'(2) = -\frac{1}{f'(3)}$	rather than $g'(2) = \frac{1}{f'(3)}$, perhaps by combining
	the calculations	of the slope of an inverse fu	anction and the slope of a
	perpendicular li	ne.	
(B)		response would result if the	
	was taken to be	the reciprocal of the derivat	tive of f at $x = 2$,
	resulting in $g'(2) = \frac{1}{f'(2)} = \frac{1}{4}$ instead of		
	$g'(2) = \frac{1}{f'(g(2))} = \frac{1}{f'(3)} = \frac{1}{5}$. In addition, the line was computed		
	using the point $(2, 1)$ on the graph of f rather than the point		
	(2,3) on the graph of g .		
(C)	Correct. Since	f(g(x)) = x, the chain rule	e can be used to
	determine that	f'(g(x))g'(x) = 1. Substitu	sting $x = 2$ gives
	1 = f'(g(2))g'	$(2) = f'(3)g'(2) \Rightarrow g'(2)$	$=\frac{1}{f'(3)}=\frac{1}{5}$. Since
	$g(2) = f^{-1}(2)$	= 3, an equation of the line	e tangent to the graph of
	g at $x = 2$ is therefore $y = \frac{1}{5}(x-2) + 3$.		
(D)	graph of f at the	response is an equation of the point where $x = 2$ rather the inverse function of f ,	er than the line tangent to

Question 1

(a) E'(7) = 6.164924

The rate of change of E(t) at time t = 7 is 6.165 (or 6.164) cars per hour per hour.

1: answer with units

(b) $\int_0^{12} E(t) dt = 520.070489$

To the nearest whole number, 520 cars enter the parking lot from time t = 0 to time t = 12.

 $2: \begin{cases} 1 : integrand \\ 1 : answer \end{cases}$

(c) $\int_{2}^{12} L(t) dt \approx (5-2) \cdot \frac{L(2) + L(5)}{2} + (9-5) \cdot \frac{L(5) + L(9)}{2} + (11-9) \cdot \frac{L(9) + L(11)}{2} + (12-11) \cdot \frac{L(11) + L(12)}{2}$ $= 3 \cdot \frac{15 + 40}{2} + 4 \cdot \frac{40 + 24}{2} + 2 \cdot \frac{24 + 68}{2} + 1 \cdot \frac{68 + 18}{2}$ = 345.5

3: { 1: trapezoidal sum 1: approximation 1: explanation

 $\int_2^{12} L(t) dt$ is the number of cars that leave the parking lot in the 10 hours between 7 A.M. (t = 2) and 5 P.M. (t = 12).

(d) $5\int_0^6 E(t) dt + 8\int_6^{12} E(t) dt = 3530.1396$

To the nearest dollar, 3530 dollars are collected from time t = 0 to time t = 12.

Question 2

(a)
$$\int_0^3 (f(x) - g(x)) dx = \int_0^3 f(x) dx - \int_0^3 g(x) dx$$
$$= \int_0^3 f(x) dx - 3.24125 = 4.919585$$

3: $\begin{cases} 1 : \text{ definite integral of } f \\ 1 : \text{ uses area of } R \end{cases}$

The area of region S is 4.920 (or 4.919).

(b)
$$\pi \int_0^3 \left((f(x) + 3)^2 - (g(x) + 3)^2 \right) dx$$

$$= \pi \left(\int_0^3 (f(x) + 3)^2 dx - \int_0^3 \left((g(x))^2 + 6g(x) + 9 \right) dx \right)$$

$$= \pi \left(\int_0^3 (f(x) + 3)^2 dx - \int_0^3 (g(x))^2 dx - 6 \int_0^3 g(x) dx - \int_0^3 9 dx \right)$$

$$= \pi \left(\int_0^3 (f(x) + 3)^2 dx - 5.32021 - 6 \cdot 3.24125 - 9 \cdot 3 \right)$$

$$= 156.263709$$

 $4: \begin{cases} 1 : \text{ form of integrand} \\ 1 : \text{ integrand} \\ 1 : \text{ uses areas of } R \text{ and } T \end{cases}$

1 : limits, constant, and answer

The volume of the solid is 156.264 (or 156.263).

(c) Volume =
$$\int_0^3 7(f(x) - g(x))^2 dx$$

 $2: \begin{cases} 1 : integrand \\ 1 : expression \end{cases}$

Question 3

(a) Average rate of change = $\frac{f(4) - f(-3)}{4 - (-3)} = \frac{-1 - 0}{7} = -\frac{1}{7}$

1: answer

(b) $f(3) = -3 + 3\cos\left(\frac{3\pi}{2}\right) = -3$

 $2: \begin{cases} 1: f'(3) \\ 1: \text{ equation} \end{cases}$

For
$$0 < x < 4$$
, $f'(x) = -1 + \left(-3\sin\left(\frac{\pi x}{2}\right)\right) \cdot \frac{\pi}{2}$
$$f'(3) = -1 + \left(-3\sin\left(\frac{3\pi}{2}\right)\right) \cdot \frac{\pi}{2} = -1 + \frac{3\pi}{2}$$

An equation for the tangent line is $y = -3 + \left(-1 + \frac{3\pi}{2}\right)(x-3)$.

(c) The average value of f on the interval $-3 \le x \le 4$ is $\frac{1}{4 - (-3)} \int_{-3}^{4} f(x) dx.$

$$\int_{-3}^{4} f(x) \, dx = \int_{-3}^{0} f(x) \, dx + \int_{0}^{4} f(x) \, dx$$

$$\int_{-3}^{0} f(x) dx = \int_{-3}^{0} \sqrt{9 - x^2} dx = \frac{9\pi}{4}$$

$$\int_0^4 f(x) \, dx = \int_0^4 \left(-x + 3\cos\left(\frac{\pi x}{2}\right) \right) dx = \left[-\frac{1}{2}x^2 + \frac{6}{\pi}\sin\left(\frac{\pi x}{2}\right) \right]_0^4 = -8$$

$$\frac{1}{4 - (-3)} \int_{-3}^{4} f(x) \, dx = \frac{1}{7} \left(\frac{9\pi}{4} - 8 \right)$$

(d) $\lim_{x\to 0^{-}} f(x) = f(0) = 3$ and $\lim_{x\to 0^{+}} f(x) = 3$, so f is continuous at x = 0.

Because f is continuous on [-3, 4], the Extreme Value Theorem guarantees that f attains an absolute maximum on [-3, 4].

4: $\begin{cases} 1 : \text{ integrals of } f \text{ over} \\ -3 \le x \le 0 \text{ and } 0 \le x \le 4 \\ 1 : \text{ value of } \int_{-3}^{0} \sqrt{9 - x^2} \, dx \\ 1 : \text{ antiderivative of } \\ -x + 3\cos\left(\frac{\pi x}{2}\right) \\ 1 : \text{ answer} \end{cases}$

2: $\begin{cases} 1 : \text{continuity at } x = 0 \\ 1 : \text{answer with justification} \end{cases}$

Question 4

(a) $g(0) = \int_{-4}^{0} f(t) dt = \frac{9}{2} - 3 = \frac{3}{2}$

$$g(4) = \int_{-4}^{4} f(t) dt$$

$$= \int_{-4}^{0} f(t) dt + \int_{0}^{1} f(t) dt + \int_{1}^{4} f(t) dt$$

$$= \frac{3}{2} + 5 + \int_{1}^{4} (-t^{2} + 5t - 4) dt$$

$$= \frac{3}{2} + 5 + \left[-\frac{1}{3}t^{3} + \frac{5}{2}t^{2} - 4t \right]_{1}^{4}$$

$$= \frac{3}{2} + 5 + \left[\left(-\frac{1}{3} \cdot 4^{3} + \frac{5}{2} \cdot 4^{2} - 4 \cdot 4 \right) - \left(-\frac{1}{3} \cdot 1^{3} + \frac{5}{2} \cdot 1^{2} - 4 \cdot 1 \right) \right]$$

$$= \frac{3}{2} + 5 + \left(\frac{8}{3} - \left(-\frac{11}{6} \right) \right) = 11$$

4: $\begin{cases} 1: g(0) \\ 1: \text{ integral of } f \text{ over } 1 \le t \le 4 \\ 1: \text{ antiderivative} \\ 1: g(4) \end{cases}$

(b) g'(x) = f(x) is negative for -1 < x < 0, and nonnegative elsewhere. Thus, the absolute minimum value of g on [-4, 4] can only occur at x = -4 or x = 0.

$$g(-4) = 0$$
$$g(0) = \frac{3}{2}$$

3: $\begin{cases} 1 : \text{identifies } x = -4 \text{ and } x = 0 \\ \text{as candidates} \\ 1 : \text{answer with justification} \end{cases}$

The absolute minimum value of g on [-4, 4] is g(-4) = 0.

(c) The graph of g is concave down on the intervals $-2 < x < -\frac{1}{2}$, $\frac{1}{2} < x < 1$, and $\frac{5}{2} < x < 4$ because g'(x) = f(x) is decreasing on these intervals.

 $2: \begin{cases} 1 : intervals \\ 1 : reason \end{cases}$

Question 5

(a)
$$\int_0^2 te^{4-t^2} dt = -\frac{1}{2}e^{4-t^2}\Big|_{t=0}^{t=2} = -\frac{1}{2} + \frac{1}{2}e^4$$

Chloe traveled $-\frac{1}{2} + \frac{1}{2}e^4$ miles from time t = 0 to time t = 2.

(b)
$$C(3) = -6 < 0$$

 $C'(3) = -9 < 0$

Chloe's speed is increasing at time t = 3 because her velocity and acceleration have the same sign.

2: $\begin{cases} 1: C(3) < 0 \text{ and } C'(3) < 0 \\ 1: \text{ answer with reason} \end{cases}$

(c) B is differentiable \Rightarrow B is continuous on [0, 4].

$$\frac{B(4) - B(0)}{4 - 0} = \frac{11 - 1}{4 - 0} = 2.5$$

By the Mean Value Theorem, there is a time t, for 0 < t < 4, such that B'(t) = 2.5 miles per hour per hour.

2: $\begin{cases} 1: \frac{B(4) - B(0)}{4 - 0} \\ 1: \text{ answer with justification} \end{cases}$

(d) B and C are continuous on [0, 2], therefore B - C is continuous on [0, 2]

as on
$$2:\begin{cases} 1: const\\ 1: answer$$

$$B(0) - C(0) = 1 - 0 > 0$$

 $B(2) - C(2) = 1.5 - 2 < 0$

By the Intermediate Value Theorem, there is a time t, for 0 < t < 2, such that B(t) - C(t) = 0, or B(t) = C(t).

2: $\begin{cases} 1 : \text{considers } B(t) - C(t) \\ 1 : \text{answer with justification} \end{cases}$

Question 6

(a) $\frac{d}{dx}(2x^2 + 3y^2 - 4xy) = \frac{d}{dx}(36) \Rightarrow 4x + 6y\frac{dy}{dx} - 4y - 4x\frac{dy}{dx} = 0$ $\Rightarrow (6y - 4x)\frac{dy}{dx} = 4y - 4x \Rightarrow \frac{dy}{dx} = \frac{4y - 4x}{6y - 4x} = \frac{2y - 2x}{3y - 2x}$

2: $\begin{cases} 1 : \text{ implicit differentiation} \\ 1 : \text{ verification} \end{cases}$

(b) $x = 6 \Rightarrow 2 \cdot 6^2 + 3y^2 - 4 \cdot 6 \cdot y = 36$ $\Rightarrow y^2 - 8y + 12 = 0 \Rightarrow y = 2 \text{ or } y = 6$ $\frac{dy}{dx}\Big|_{(x=y)=(6,2)} = \frac{4-12}{6-12} = \frac{4}{3}$

 $2: \begin{cases} 1 : slope at (6, 2) \\ 1 : slope at (6, 6) \end{cases}$

The slope of the line tangent to the curve at (6, 2) is $\frac{4}{3}$.

$$\frac{dy}{dx}\Big|_{(x,y)=(6,6)} = \frac{12-12}{18-12} = 0$$

The slope of the line tangent to the curve at (6, 6) is 0.

(c) The curve has vertical tangent lines where 3y - 2x = 0 and $2y - 2x \neq 0$.

$$3y - 2x = 0 \implies y = \frac{2}{3}x \implies 2x^2 + 3\left(\frac{2}{3}x\right)^2 - 4x \cdot \frac{2}{3}x = 36$$
$$\implies \left(2 + \frac{4}{3} - \frac{8}{3}\right)x^2 = \frac{2}{3}x^2 = 36 \implies x^2 = 54$$

Because x is positive, $x = 3\sqrt{6}$.

 $2: \begin{cases} 1 : sets \ 3y - 2x = 0 \\ 1 : answer \end{cases}$

(d) $\frac{d}{dt} (2x^2 + 3y^2 - 4xy) = \frac{d}{dt} (36)$ $\Rightarrow 4x \frac{dx}{dt} + 6y \frac{dy}{dt} - 4\left(x \frac{dy}{dt} + y \frac{dx}{dt}\right) = 0$ $\Rightarrow (4x - 4y) \frac{dx}{dt} + (6y - 4x) \frac{dy}{dt} = 0$ $(4 \cdot 2 - 4 \cdot (-2)) \frac{dx}{dt} \Big|_{t=1} + (6 \cdot (-2) - 4 \cdot 2) \cdot 4 = 0 \Rightarrow \frac{dx}{dt} \Big|_{t=1} = 5$

3: $\begin{cases} 1 : \text{chain rules or product rule} \\ 1 : \text{derivative with respect to } t \\ 1 : \text{answer} \end{cases}$

— OR —

$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} = \frac{2y - 2x}{3y - 2x} \cdot \frac{dx}{dt}$$

$$4 = \frac{2 \cdot (-2) - 2 \cdot 2}{3 \cdot (-2) - 2 \cdot 2} \cdot \frac{dx}{dt} \Big|_{t=1} = \frac{4}{5} \cdot \frac{dx}{dt} \Big|_{t=1} \implies \frac{dx}{dt} \Big|_{t=1} = 5$$

2019 AP Calculus AB Scoring Worksheet

Section I: Multiple Choice

$$\begin{array}{ccc} \underline{\hspace{1cm}} & \times & 1.2000 & = & \underline{\hspace{1cm}} \\ \text{Number Correct} & & & \text{Weighted Section I Score} \\ \text{(out of 45)} & & \text{(Do not round)} \end{array}$$

Section II: Free Response

Composite Score

Weighted Weighted Composite Score
Section I Score Section II Score (Round to nearest whole number)

AP Score Conversion Chart Calculus AB

(Do not round)

Composite	
Score Range	AP Score
69-108	5
56-68	4
43-55	3
27-42	2
0-26	1

2019 AP Calculus AB Question Descriptors and Performance Data

Multiple-Choice Questions

Question	Skill	Learning Objective	Topic	Key	% Correct
1	1.E	FUN-6.C	Finding Antiderivatives and Indefinite Integrals - Basic Rules and Notation	В	88
2	1.D	CHA-2.C	Defining the Derivative of a Function and Using Derivative Notation	С	65
3	1.E	FUN-3.C	The Chain Rule	D	66
4	1.E	FUN-6.D	Integrating Using Substitution	D	54
5	2.B	FUN-4.A	Determining Concavity of Functions over Their Domains	С	70
6	1.E	FUN-3.D	Implicit Differentiation	D	41
7	1.E	FUN-3.A	Derivatives of $\cos x$, $\sin x$, e^x , and $\ln x$	D	62
8	2.B	LIM-2.D	Connecting Limits at Infinity and Horizontal Asymptotes	В	50
9	1.E	CHA-5.A	Finding the Area Between Curves Expressed as Functions of x	В	64
10	1.E	FUN-3.B	The Quotient Rule	А	64
11	1.E	FUN-6.A	Applying Properties of Definite Integrals	А	53
12	3.D	FUN-1.B	Using the Mean Value Theorem	С	63
13	1.E	LIM-4.A	Using L'Hospital's Rule for Finding Limits of Indeterminate Forms	А	60
14	2.C	FUN-7.F	Exponential Models with Differential Equations	D	75
15	3.C	FUN-2.A	Connecting Differentiability and Continuity - Determining When Derivatives Do and Do Not Exist	А	54
16	1.E	FUN-7.D	Finding General Solutions Using Separation of Variables	В	30
17	2.B	FUN-5.A	Interpreting the Behavior of Accumulation Functions Involving Area	В	65
18	1.E	FUN-3.B	The Product Rule	D	62
19	2.B	CHA-3.B	Straight-Line Motion: Connecting Position, Velocity, and Acceleration	А	34
20	1.C	FUN-6.A	Applying Properties of Definite Integrals	С	57
21	1.D	CHA-2.B	Defining the Derivative of a Function and Using Derivative Notation	D	61
22	2.D	FUN-7.C	Sketching Slope Fields	D	49
23	1.E	CHA-5.B	Volumes with Cross Sections - Squares and Rectangles	В	36
24	3.D	FUN-6.B	The Fundamental Theorem of Calculus and Definite Integrals	А	40
25	3.G	FUN-7.B	Verifying Solutions for Differential Equations	А	34
26	3.D	FUN-4.A	Using the Candidates Test to Find Absolute (Global) Extrema	В	53
27	3.F	CHA-3.A	Interpreting the Meaning of the Derivative in Context	С	66
28	1.E	CHA-3.E	Solving Related Rates Problems	В	36
29	2.B	LIM-2.D	Connecting Infinite Limits and Vertical Asymptotes	А	34
30	3.D	LIM-5.C	Riemann Sums, Summation Notation, and Definite Integral Notation	В	27

2019 AP Calculus AB Question Descriptors and Performance Data

Question	Skill	Learning Objective	Торіс	Key	% Correct
76	2.E	FUN-4.A	Determining Intervals on Which a Function Is Increasing or Decreasing	D	82
77	1.E	CHA-3.B	Straight-Line Motion: Connecting Position, Velocity, and Acceleration	В	86
78	1.E	CHA-3.F	Approximating Values of a Function Using Local Linearity and Linearization	А	66
79	3.F	CHA-4.B	Finding the Average Value of a Function on an Interval	В	61
80	1.E	FUN-6.B	The Fundamental Theorem of Calculus and Definite Integrals	С	62
81	2.B	LIM-2.A	Exploring Types of Discontinuities	С	81
82	1.E	FUN-6.A	Applying Properties of Definite Integrals	А	71
83	3.D	LIM-2.C	Removing Discontinuities	А	53
84	3.D	FUN-1.A	Working with the Intermediate Value Theorem	С	48
85	3.D	FUN-4.A	Using the First Derivative Test to Find Relative (Local) Extrema	D	51
86	2.B	FUN-4.A	Connecting a Function, Its First Derivative, and Its Second Derivative	А	76
87	1.E	CHA-4.C	Connecting Position, Velocity, and Acceleration Functions Using Integrals	С	32
88	1.E	CHA-3.A	Interpreting the Meaning of the Derivative in Context	С	33
89	3.E	FUN-4.A	Sketching Graphs of Functions and Their Derivatives	В	33
90	1.E	FUN-3.E	Differentiating Inverse Functions	С	37

Free-Response Questions

Question	Skill	Learning Objective	Topic	Mean Score
1	1.E 3.D 3.F 4.D 4.A 4.B 4.C 4.E	CHA-2.D CHA-4.E LIM-5.A	2.3 8.3 6.2 8.3	6.03
2	1.D 1.E 2.B 4.E	CHA-5.A CHA-5.C CHA-5.B	8.4 8.12 8.7	3.46
3	1.D 1.E 3.C 3.D 4.A	CHA-2.A CHA-2.C CHA-4.B FUN-1.C	2.1 2.2 8.1 5.2	1.71
4	1.D 1.E 2.B 2.E 4.A	FUN-6.A FUN-4.A	6.6 5.5 5.6	2.98
5	1.D 1.E 3.D 3.E 4.A	CHA-4.C CHA-3.B FUN-1.B FUN-1.A	8.2 4.2 5.1 1.16	2.71
6	1.C 1.E 3.G 4.C	FUN-3.D FUN-4.E CHA-3.E	3.2 5.12 4.5	2.98