
Chapter 9 Parametric Equations; Polar Equations

9.1 Parametric Equations

Concepts and Vocabulary

1. Let x = x(t) and y = y(t) be two functions whose common domain is some interval I. The
collection of points defined by (x, y) = (x(t), y(t)) is called a plane curve . The variable t is

called a parameter .

3. The parametric equations x(t) = a sin t, y(t) = a cos t define a (d) circle .

5. False . A curve can be defined parametrically in an infinite number of ways.

Skill Building

7. (a) Solving for t in the x(t) equation, we have t =
1

2
(x−1). Plug this into y(t): y =

1

2
(x−1)+2

or y =
1

2
x+

3

2
. Since t varies from −∞ to +∞, the rectangular equation is defined for all x

from −∞ to ∞.
(b)

9. (a) Solving for t in the y(t) equation, we have t = y− 2. Plug this into x(t): x = 2(y− 2)+1

or x = 2y − 3 . Since t varies from 0 to 2, we have 1 ≤ x ≤ 5 and y varies from y(0) = 2 to

y(2) = 4.
(b)
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11. (a) Plug y = t into x(t): x = ey . This can be rewritten as y = lnx. Since −∞ < t < ∞,
we see that 0 < x(t) < ∞.
(b)

13. (a) Notice that [x(t)]
2
+ [y(t)]

2
= sin2 t + cos2 t = 1, which means our parametrization is

that of a circle of radius 1 centered at (0, 0), namely x2 + y2 = 1 . To find its starting point,

ending point, and orientation, plot the points t = 0,
π

2
, π,

3π

2
, 2π. We find, respectively, the

points (0, 1), (1, 0), (0,−1), (−1, 0), and (0, 1). Plotted in this order, we trace a circle starting at
the point (0, 1) and moving clockwise until we arrive back at (0, 1).
(b)

15. (a) We eliminate the parameter t using the Pythagorean Theorem sin2 t+cos2 t = 1. Since

sin t =
x

2
and cos t =

y

3
,

(x

2

)2

+
(y

3

)2

= sin2 t+ cos2 t = 1

x2

4
+

y2

9
= 1

which is an ellipse centered at the origin. To find its starting point, ending point, and orientation,

plot the points t = 0,
π

2
, π,

3π

2
, 2π. We find, respectively, the points (0, 3), (2, 0), (0,−3), (−2, 0),

and (0, 3). Plotted in this order, we trace an ellipse oriented clockwise.
(b)



9.1 Parametric Equations 985

17. (a) Notice that 2 sin t = x + 3 and 2 cos t = y − 1. If we square and add both equations,
then we have

(x+ 3)2 + (y − 1)2 = 4 sin2 t+ 4 cos2 t = 4

(x+ 3)2

4
+

(y − 1)2

4
= 1 ,

which is a circle centered at (−3, 1) with radius 2. To find its starting point, ending point, and

orientation, plot the points t = 0,
π

2
, and π. We find, respectively, the points (−3, 3), (−1, 1),

and (−3,−1). Plotted in this order, we trace the right half of the circle centered at (−3, 1) with
radius 2 oriented clockwise.
(b)

19. (a) Since x(t) = 3, every point on our plane curve has x-coordinate equal to 3. These

points describe the line x = 3 . Since t goes from −∞ to ∞, so does y so the orientation of the
curve is upward.
(b)

21. (a) Since x(t) = 2, the rectangular equation is x = 2 .
(b)

(c) Since t > 0, we know that y > 4 .
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(d)

23. (a) Solving for t in the y(t) equation, we have t = y2. Plug this into the x(t) equation:

x = y2 + 5 .

(b)

(c) Since t ≥ 0, we see that the parametric curve is defined only for x ≥ 5 and y ≥ 0 .

(d)

25. (a) Solving for t in the y(t) equation: t = y2/3. Plug this into the x(t) equation: x =

(y2/3)1/2 + 1 which is the same as x = y1/3 + 1, or, equivalently, y = (x− 1)3 .

(b)
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(c) Since t ≥ 1, we see that x ≥ 2 and y ≥ 1 .

(d)

27. (a) Solving for t we have y equation, we have t = tan−1 y, so that x = sec
(

tan−1 y
)

.

(b)

(c) Since sec t ≥ 1 for all t ≥ 1, we have x ≥ 1 , so we only have the right-hand portion of the

graph in part (b).
(d)
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29. (a) Since x = t4 and y2 = (t2)2 = t4, we see that x = y2 .

(b)

(c) There are no restrictions on t, so we assume −∞ < t < ∞. Since y(t) is a even power of t,

we have that y ≥ 0 and also x ≥ 0 .

(d)

31. (a) Solving for t in the y(t) equation: t =
y + 1

2
. Plug this into the x(t) equation:

x =

(

y + 1

2

)2

.

(b)

(c) Since x ≥ 0, there are no restrictions on the plane curve .
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(d)

33. (a) Notice that this parametrization is the same as in Problem 31 replacing t with
1

t
. This

means the plane curve is the same: x =

(

y + 1

2

)2

.

(b)

(c) Since t 6= 0, x > 0 and y 6= −1 .

(d)

35. (a) Solving for sin2 t in x(t) we have sin2 t =
x+ 2

3
. Since cos2 t =

(y

2

)2

we see that

x+ 2

3
+

y2

4
= 1 .
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(b)

(c) For 0 ≤ t ≤ π, we have 0 ≤ sin t ≤ 1 and −1 ≤ cos t ≤ 1 so we see that −2 ≤ x ≤ 1 and

−2 ≤ y ≤ 2 .

(d)

37. Solving for t2, we have t2 = 1/x. Now plug this into y:

y =
2

1/x+ 1
=

2x

1 + x
.

As t increases, x approaches 0 and so does y. Also x ≥ 0 and 0 < y ≤ 2 .

39. Solving for t2 in the x(t) equation, we have

x2 =
16

4− t2

4− t2 =
16

x2

t2 = 4− 16

x2
.

Taking the square root to solve for t and plugging both t and t2 into the y(t) equation, we have

y =
4
(
√

4− 16
x2

)

√

4−
(

4− 16
x2

)

y =
4
√

4− 16
x2

√

16
x2

y =
4
√

4− 16
x2

4
x

y = x

√

4− 16

x2

y = 2
√

x2 − 4 .
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As t approaches 2, the denominators of x(t) and y(t) are getting close to 0, so x(t) and y(t) are

approaching∞. The points are going upward from the point (2, 0) along the curve y = 2
√
x2 − 4.

Also x ≥ 2 and y ≥ 0 .

41. Solving for sin t and cos t in x(t) and y(t), respectively, and then squaring, we have

sin t = x+ 2

cos t =
y − 4

−2

(x+ 2)2 +
(y − 4)2

4
= 1 ,

which is an ellipse centered at (−2, 4). At t = 0, the object is at the point (−2, 2); at t =
π

2
, the

object is at the point (−1, 4). This means the object is tracing this ellipse in a counterclockwise

manner. Also −3 ≤ x ≤ −1 and 2‘y ≤ 6 .

43. Answers will vary. Here are two parameterizations.

x(t) = t, y(t) = 4t− 2, −∞ < t < ∞

x(t) = t3, y(t) = 4t3 − 2, −∞ < t < ∞

45. Answers will vary. Here are two parameterizations.

x(t) = t, y(t) = −2t2 + 1, −∞ < t < ∞

x(t) = t+ 1, y(t) = −2(t+ 1)2 + 1, −∞ < t < ∞

47. Answers will vary. Here are two parameterizations.

x(t) = t, y(t) = 4t3, −∞ < t < ∞

x(t) = t3, y(t) = 4t, −∞ < t < ∞

49. Answers will vary. Here are two parameterizations.

y(t) = t, x(t) =
1

3

√
t− 3, t ≥ 0

y(t) = t3, x(t) =
1

3
t1/6 − 3, t ≥ 0

51. Answers will vary. One such answer would be the following: The line through the given seg-

ment is y = x−2 so one pair of parametric equations would be x(t) = t, y(t) = t− 2; 2 ≤ t ≤ 7 .

53. Answers will vary. One such answer would be the following: The ellipse can be parametrized

by x(t) = 3 cos t, y(t) = 2 sin t . To start at the left end of the ellipse, we can begin with t = π. At

t =
3π

2
, we are at the bottom of the ellipse (which agrees with the counterclockwise orientation),

so an appropriate range on t would be π ≤ t ≤ 5π

2
.
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55. For counterclockwise orientation, we choose x(t) = 3 cos(ωt), y(t) = 2 sin(ωt). If 1 revolution

takes 3 seconds, the period is
2π

ω
= 3, so ω =

2π

3
. The parametrization is

x(t) = 3 cos

(

2π

3
t

)

, y(t) = 2 sin

(

2π

3
t

)

.

To begin at (3, 0) the interval on t would be 0 ≤ t ≤ 3 .

57. For clockwise orientation, we choose x(t) = 3 sin(ωt), y(t) = 2 cos(ωt). If 1 revolution takes

2 seconds, the period is
2π

ω
= 2, so ω = π. The parametrization is

x(t) = 3 sin(πt), y(t) = 2 cos(πt) .

To begin at (0, 2) the interval on t would be 0 ≤ t ≤ 2 .

59. Notice that the parametrization in (a) is the plane curve y = x2 for −4 ≤ x ≤ 4. Each

of the parameterizations in (b), (c), and (d) are some variation of the parametrization in (a).
Part (b) is the same plane curve as (a) if we replace t with

√
t, but now we can only consider

non-negative x-values since in (b) x(t) =
√
t ≥ 0; there are no restrictions on x in (a). Part (c) is

the same plane curve as (a) if we replace t with et, but again there are included restrictions since
in (b) x > 0. Part (d) is the same plane curve as (a) if we replace t with cos t (with no included
restrictions) except that the orientation is opposite of that in (a) and −1 ≤ x ≤ 1 whereas in
(a) −4 ≤ x ≤ 4.
(a)

(b)

(c)
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(d)

Applications and Extensions

61. I → (d) counterclockwise, II → (a) counterclockwise,

III → (b) counterclockwise, IV → (c) counterclockwise

63. I → (c) from (1, 0) to (−1, 0), II → (b) from (−1, 0) to (1, 0), III → (a) clockwise,

IV → (d) from

(

−
√
2

2
, 1

)

to (1, 0)

65. (a)

(b) (x(2.1), y(2.1)) ≈ (8.66, 10.53)

67. Answers will vary.

69. (a) Using the given formulas x(t) = (125 cos 40◦)t ≈ 95.8t and

y(t) = −1

2
· 32t2 + (125 sin 40◦)t+ 3 ≈ −16t2 + 80.3t+ 3 .

(b) The height of the ball after 2 seconds is y(2) = −1

2
·32(2)2+(125 sin40◦) ·2+3 ≈ 99.6 feet .

(c) The horizontal distance the ball has traveled after 2 seconds is

x(2)− x(0) = (125 cos40◦) · 2− 0 ≈ 191.6 feet .
(d) To find how long it takes, solve x(t) = 300 for t.

(125 cos 40◦)t = 300

t =
300

125 cos40◦

t ≈ 3.13 seconds .

(e) The height at t ≈ 3.13 seconds is y(3.1) ≈ 97.6 feet .
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(f) To find the time when the ball hits the ground, we need to solve y(t) = 0 (i.e. the height of
the is 0).

−1

2
· 32t2 + (125 sin40◦)t+ 3 = 0.

Using the quadratic formula, we find the two solutions t ≈ −0.04 seconds and t ≈ 5.1 seconds.

Since t ≥ 0, it must be ≈ 5.1 seconds that the ball is in the air.

(g) The ball has traveled x(5.1) ≈ 488.6 feet horizontally before it hits the ground.

71. (a) Using the given formulas x(t) = (80 cos 35◦)t ≈ 65.5t and

y(t) = −1

2
· 32t2 + (80 sin 35◦)t+ 6 ≈ −16t2 + 45.9t+ 6 .

(b) The height of the football after 1 second is y(1) = −1

2
· 32 + (80 sin 35◦) + 6 ≈ 35.9 feet .

(c) The horizontal distance the ball has traveled after 1 second is x(1)− x(0) = (80 cos 35◦) −
0 ≈ 65.5 feet .
(d) To find how long it takes, solve x(t) = 120 for t.

(80 cos 35◦)t = 120

t =
120

80 cos 35◦

t ≈ 1.8 seconds .

(e) The height of the ball at t ≈ 1.8 seconds is y(1.8) ≈ 36.8 feet .

73. The parametrization (2 cos θ, 2 sin θ), 0 ≤ θ ≤ 2π, traces a circle of radius 2 centered
at the origin starting at (2, 0) in the counterclockwise direction while the parametrization
(2 sin θ, 2 cos θ), 0 ≤ θ ≤ 2π, traces a circle of radius 2 centered at the origin starting at (0, 2) in
the clockwise direction.

Challenge Problems

75. The line through (−R, 0) with slope m has equation y = m(x + R). We want to find the
point P = (x, y) on the line y = m(x +R) that intersects the circle x2 + y2 = R2. By plugging
y = m(x+R) = mx+mR into the circle equation to solve for x, we have

x2 + (mx+mR)2 = R2

x2 +m2x2 + 2m2Rx+m2R2 = R2

(m2 + 1)x2 + (2m2R)x+ (m2 − 1)R2 = 0.

Using the quadratic equation to solve for x, the solutions are

x =
−(2m2R)±

√

(2m2R)2 − 4(m2 + 1)(m2 − 1)R2

2(m2 + 1)

=
−2m2R±

√

4m4R2 − 4(m4 − 1)R2

2(m2 + 1)

=
−2m2R±

√
4R2

2(m2 + 1)

=
−2m2R± 2R

2(m2 + 1)

=
−m2 ± 1

m2 + 1
· R.
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Writing the two solutions separately, they are

x =
−m2 + 1

m2 + 1
· R, x =

−m2 − 1

m2 + 1
· R = −R.

The second solution x = −R is the original point we wrote the equation of the line through, so
the new point P = (x, y) has as its x-coordinate

x =
−m2 + 1

m2 + 1
·R.

To find the y-coordinate, we know that P lies on the line y = m(x+R). Plugging in x-coordinate,
we have

y = m

(−m2 + 1

m2 + 1
·R+R

)

=
2mR

m2 + 1
.

This means we can parametrize a circle using the slope m through the point (−R, 0) using the
equations

x(m) =
R(1−m2)

1 +m2
y(m) =

2Rm

1 +m2

for −∞ < m < ∞.
77. By referring to the picture, the center of the smaller circle traces out a circle centered at
the origin of radius a− b in a counterclockwise manner.

The center of the smaller circle (xc(t), yc(t)) is parametrized by

xc(t) = (a− b) cos t

yc(t) = (a− b) sin t,

for 0 ≤ t ≤ 2π. Now refer to the following picture.

Note that arc AT is equal to arc TP since the inner circle is rolling along the outer circle. Recall
that in a circle of radius R, the measure of an arc with central angle θ is (2πR) · θ

2π = R ·θ. With
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this in hand, we know that arc AT is a · t. This means that arc TP is also a · t so the central
angle PCT has measure satisfying the equation

b ·m∠PCT = a · t.
This means

m∠PCT =
a

b
t.

Now picture the inner circle rotated so that CT is parallel to the x-axis. [Keep in mind that
this amounts to a clockwise rotation of t radians.] Then since the center of the inner circle
is located at (xc, yc) with radius b and rotates clockwise, this circle could be parametrized by
(xc + b cos t, yc − b sin t). The point P would be located on the circle after we moved through an

angle with measure m∠PCT =
a

b
t, so it would be located at

(

xc + b cos
(a

b
t
)

, yc − b sin
(a

b
t
))

.

But to find where P is actually located (remember we rotated the inner circle t radians clockwise),
we need to rotate the inner circle back t radians (i.e. subtract t radians inside the sine and cosine).
The parametrization of the point P , as it travels around the hypocycloid, is given by

x(t) = xc + b cos
(a

b
t− t

)

= (a− b) cos t+ b cos

(

a− b

b
t

)

y(t) = yc − b sin
(a

b
t− t

)

= (a− b) sin t− b sin

(

a− b

b
t

)

,

for 0 ≤ t ≤ 2π.
79. It will be helpful to look through the solution to Problem 77 before reading this solution. The
smaller circle’s center traces out a circle centered at (0, 0) with radius a+b in a counterclockwise
manner. The center of the smaller circle (xc(t), yc(t)), oriented counterclockwise, is parametrized
by

xc(t) = (a+ b) cos t

yc(t) = (a+ b) sin t,

for 0 ≤ t ≤ 2π. In the following picture,

we have that arc AT is equal to arc TP . Reasoning as in Problem 77, we find that m∠PCT =
a

b
t.

If we rotate the smaller circle about its center so that TC is parallel to the x-axis with T to
the right of C (which is a clockwise rotation of π + t radians), then the smaller circle (also
oriented counterclockwise) can be parametrized by (xc + b cos t, yc + b sin t). The point P would

be located on this circle after we moved through an angle with measure m∠PCT =
a

b
t, so it

would be located at
(

xc + b cos
(a

b
t
)

, yc + b sin
(a

b
t
))

.
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If we undo the original clockwise rotation of π + t radians (this would amount to adding π + t
radians inside the sine and cosine), we find that the parametrization of the point P on the
epicycloid is given by

x(t) = xc + b cos
(a

b
t+ (π + t)

)

= (a+ b) cos t− b cos

(

a+ b

b
t

)

y(t) = yc + b sin
(a

b
t+ (π + t)

)

= (a+ b) sin t− b sin

(

a+ b

b
t

)

,

for 0 ≤ t ≤ 2π where we used that cos(θ+ π) = − cos θ and sin(θ+ π) = − sin θ for any angle θ.

AP
R©

Practice Problems

1. For the pair of parametric equations in (C), eliminate the parameter t using a Pythagorean
Identity.

cos2(2t) + sin2(2t) = 1
(x

3

)2

+
(y

3

)2

= 1

x2 + y2 = 32

The rectangular equation represents a circle with radius t and centered at the origin. In
the parametric equations, 0 ≤ t ≤ π, so the curve begins when t = 0 at the point (3, 0)
and ends when t = π at the point (3, 0).

The answer is C.

3. Eliminate the parameter t using a Pythagorean Identity.

cos2 t+ sin2 t = 1
(x

4

)2

+

(

y

1/2

)2

= 1

x2

16
+ 4y2 = 1

The answer is D.

9.2 Tangent Lines

Concepts and Vocabulary

1. Let C denote a curve represented by the parametric equations x = x(t), y = y(t), a ≤ t ≤ b,
where each function x(t) and y(t) is continuous on the closed interval [a, b] and differentiable on

the open interval (a, b). If both
dx

dt
and

dy

dt
are continuous and never simultaneously 0 on (a, b),

then C is called a (a) smooth curve.

3. If in the formula for the slope of a tangent line,
dy

dt
= 0

(

but
dx

dt
6= 0

)

, then the curve has

a horizontal tangent line at the point (x(t), y(t)). If
dx

dt
= 0

(

but
dy

dt
6= 0

)

, then the curve

has a vertical tangent line at the point (x(t), y(t)).
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Skill Building

For problems 5-12, we will use the formula
dy

dx
=

dy
dt
dx
dt

.

5.
dx

dt
= et cos t− et sin t and

dy

dt
= et sin t+ et cos t, so

dy

dx
=

et sin t+ et cos t

et cos t− et sin t
=

sin t+ cos t

cos t− sin t
.

7.
dx

dt
= 1− 1

t2
and

dy

dt
= 1, so

dy

dx
=

1

1− 1
t2

.

9.
dx

dt
= − sin t+ sin t+ t cos t = t cos t and

dy

dt
= cos t− cos t+ t sin t = t sin t, so

dy

dx
=

t sin t

t cos t
= tan t .

11.
dx

dt
= −2 cot t csc2 t and

dy

dt
= − csc2 t, so

dy

dx
=

− csc2 t

−2 cot t csc2 t
=

1

2 cot t
.

13. (a) The slope of the tangent line is

[

1

4t

]

t=2

=
1

8
. The equation of the tangent line at

(x(2), y(2)) = (8, 2) is

y − 2 =
1

8
(x− 8)

y =
1

8
x+ 1 .

(b)

15. (a) The slope of the tangent line is

[

4t

3

]

t=1

=
4

3
. The equation of the tangent line at

(x(1), y(1)) = (3, 1) is

y − 1 =
4

3
(x− 3)

y =
4

3
x− 3 .
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(b)

17. (a) The slope of the tangent line is

[ −t−2

1
2 t

−1/2

]

t=4

=

[ −2

t3/2

]

t=4

= −1

4
. The equation of the

tangent line at (x(4), y(4)) = (2, 1/4) is

y − 1

4
= −1

4
(x− 2)

y = −1

4
x+

3

4
.

(b)

19. (a) The slope of the tangent line is

[−4(t+ 2)−2

2(t+ 2)−2

]

t=0

= −2. The equation of the tangent

line at (x(0), y(0)) = (0, 2) is

y − 2 = −2(x− 0)

y = −2x+ 2 .

If we add x(t) and y(t) together, then

x(t) + y(t) =
t

t+ 2
+

4

t+ 2
=

t+ 4

t+ 2
=

t+ 2 + 2

t+ 2

=
t+ 2

t+ 2
+

2

t+ 2
= 1 +

1

2
y(t).

So x + y = 1 +
1

2
y, or y = −2x + 2, is the equation of the plane curve. This means that the

tangent line is the plane curve itself.
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(b)

21. (a) The slope of the tangent line is

[−e−t

et

]

t=0

= −1. The equation of the tangent line at

(x(0), y(0)) = (1, 1) is

y − 1 = −(x− 1)

y = −x+ 2 .

(b)

23. (a) The slope of the tangent line is

[− sin t

cos t

]

t=π/4

=
−
√
2/2√
2/2

= −1. The equation of the

tangent line at (x(π/4), y(π/4)) = (
√
2/2,

√
2/2) is

y −
√
2

2
= −

(

x−
√
2

2

)

y = −x+
√
2 .

(b)
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25. (a) The slope of the tangent line is

[−3 sin t

4 cos t

]

t=π/3

=
−3

√
3/2

4 · 1/2 = −3
√
3

4
. The equation of

the tangent line at (x(π/3), y(π/3)) = (2
√
3, 3/2) is

y − 3

2
= −3

√
3

4

(

x− 2
√
3
)

y = −3
√
3

4
x+ 6 .

(b)

27.

dx

dt
= 2t

dy

dt
= 3t2 − 4

dy

dt
= 0 when t = ± 2√

3
= ±2

√
3

3
. At both values,

dx

dt
6= 0, so we have horizontal tangent lines

at t = ±2
√
3

3
which correspond to the points

(

4

3
,−16

√
3

9

)

and

(

4

3
,
16

√
3

9

)

. Next,
dx

dt
= 0

when t = 0. At t = 0,
dy

dt
6= 0, so we have a vertical tangent line at t = 0 which corresponds to

the point (0, 0) .

29.

dx

dt
= sin t

dy

dt
= − cos t

On the interval 0 ≤ t ≤ 2π,
dy

dt
= 0 when t =

π

2
,
3π

2
. At both values,

dx

dt
6= 0, so we have

horizontal tangent lines at t =
π

2
,
3π

2
which correspond to the points (1, 0) and (1, 2) . Next,

on the interval 0 ≤ t ≤ 2π,
dx

dt
= 0 when t = 0, π, 2π. At all three values,

dy

dt
6= 0, so we have

vertical tangent lines at t = 0, π, 2π which correspond to the points (0, 1) and (2, 1) .
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Applications and Extensions

31. (a) We begin by finding the derivatives
dx

dt
and

dy

dt
.

dx

dt
= 2t and

dy

dt
= 3t2 − 4

The vertical tangent lines occur when
dx

dt
= 0 and

dy

dt
6= 0. Notice that this is when t = 0, which

corresponds to the point (2, 0) . The horizontal tangent lines occur when
dy

dt
= 0 and

dx

dt
6= 0.

This is when

3t2 − 4 = 0

t2 =
4

3

t = ± 2√
3
.

For both of these values,
dx

dt
6= 0, so the horizontal tangent lines occur at the points

(x(2/
√
3), y(2/

√
3)) =

(

10

3
,−16

√
3

9

)

and (x(−2/
√
3), y(−2/

√
3)) =

(

10

3
,
16

√
3

9

)

.

(b) The point (6, 0) corresponds to the values t = ±2. Each of these values produces a slope of
a tangent line at (6, 0), namely

dy

dx
=







dy

dt
dx

dt







t=2

=
3(2)2 − 4

2(2)
= 2 and

dy

dx
=







dy

dt
dx

dt







t=−2

=
3(−2)2 − 4

2(−2)
= −2.

(c) The equations of the two tangent lines at (6, 0) are

y = 2x− 12

y = −2x+ 12 .

(d)

Challenge Problems

33. If
dx

dt
is never equal to 0, then x(t) is always increasing or always decreasing, which means

that x(t) passes the horizontal line test. Since x(t) passes the horizontal line test, we know an
inverse of x = f(t) exists, namely t = f−1(x). If we substitute t = f−1(x) into y = g(t), then

y = g
(

f−1(x)
)

.
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By defining the function F = g ◦ f−1, we see that y = F (x). Furthermore, we know that

dy

dx
=

dy

dt
dx

dt

and since the curve C is smooth (and
dx

dt
6= 0),

dy

dx
exists, making F differentiable.

35. Using the formula developed in Problem 34, we start by finding the first and second deriva-
tives of x and y with respect to θ.

dx

dθ
= −3a cos2 θ sin θ

dy

dθ
= 3a sin2 θ cos θ

d2x

dθ2
= 6a sin2 θ cos θ − 3a cos3 θ

d2y

dθ2
= 6a cos2 θ sin θ − 3a sin3 θ.

So

dy

dx
=

(6a cos2 θ sin θ − 3a sin3 θ)(−3a cos2 θ sin θ)− (3a sin2 θ cos θ)(6a sin2 θ cos θ − 3a cos3 θ)

(−3a cos2 θ sin θ)3

=
−18a2 cos4 θ sin2 θ + 9a2 sin4 θ cos2 θ − 18a2 sin4 θ cos2 θ + 9a2 sin2 θ cos4 θ

−27a3 cos6 θ sin3 θ

=
−18a2 cos2 θ sin2 θ(cos2 θ + sin2 θ) + 9a2 sin2 θ cos2 θ(sin2 θ + cos2 θ)

−27a3 cos6 θ sin3 θ

=
−9a2 sin2 θ cos2 θ

−27a3 cos6 θ sin3 θ

=
1

3a cos4 θ sin θ
.

AP
R©

Practice Problems

1. x(t) = tan t y(t) = t2 − 3t+ 8

Begin by finding the derivatives
dx

dt
and

dy

dt
.

dx

dt
= sec2 t

dy

dt
= 2t− 3

Find numbers t that correspond to the point (0, 8).

tan t = 0 t2 − 3t+ 8 = 8

t = nπ for integer n t2 − 3t = 0

t(t− 3) = 0

t = 0 and t = 3

Since −π

4
≤ t <

π

4
, t = 0.

The slope of the tangent lines is given by
dy

dx
=

dy
dt
dx
dt

=
2t− 3

sec2 t
.

At t = 0,
dy

dx
=

2(0)− 3

sec2 0
= −3.

The answer is A.



1004 Chapter 9 Parametric Equations; Polar Equations

3. x(t) = t3 − 12t y(t) = 4t2 + t

Begin by finding the derivatives
dx

dt
and

dy

dt
.

dx

dt
= 3t2 − 12

dy

dt
= 8t+ 1

The curve has a horizontal tangent when
dy

dt
= 8t+ 1 = 0, but

dx

dt
6= 0.

Note that 8t+ 1 = 0 when t = −1

8
, and that

dx

dt

∣

∣

∣

∣

t=− 1
8

= 3

(

−1

8

)

− 12 = −765

64
.

The curve has a vertical tangent when
dx

dt
= 3t2 − 12 = 0.

Note that 3t2 − 12 = 3(t+ 2)(t− 2) = 0 when t = −2, 2.

The answer is C.

9.3 Arc Length; Surface Area of a Solid of Revolution

Concepts and Vocabulary

1. False . The formula should be

S = 2π

∫ b

a

y(t)

√

(

dx

dt

)2

+

(

dy

dt

)2

dt.

3. False . The formula should be

s =

∫ b

a

√

(

dx

dt

)2

+

(

dy

dt

)2

dt,

which means under the square root we should square the first derivatives of x and y, not take
the second derivative of x and y.

Skill Building

5. We begin by finding the derivatives
dx

dt
and

dy

dt
.

dx

dt
= 3t2 and

dy

dt
= 2t

The curve is smooth for 0 ≤ t ≤ 2. Using the arc length formula, we have

s =

∫ 2

0

√

(3t2)2 + (2t)2 dt

=

∫ 2

0

√

9t4 + 4t2 dt

=

∫ 2

0

t
√

9t2 + 4 dt.
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We use the substitution u = 9t2 + 4. Then du = 18t dt, or equivalently, t dt =
du

18
. Changing

the limits of integration, we find that when t = 0, then u = 4, and when t = 2, then u = 40.
The arc length s is

s =

∫ 2

0

t
√

9t2 + 4 dt =

∫ 40

4

√
u
du

18
=

1

18

∫ 40

4

u1/2 du =
1

18

[

u3/2

3/2

]40

4

=
1

27

[

403/2 − 43/2
]

=
1

27
[80

√
10− 8] .

7. We begin by finding the derivatives
dx

dt
and

dy

dt
.

dx

dt
= 1 and

dy

dt
= t

The curve is smooth for 0 ≤ t ≤ 2. Using the arc length formula, we have

s =

∫ 2

0

√

(1)2 + (t)2 dt

=

∫ 2

0

√

1 + t2 dt.

To compute this integral, we use the Table of Integrals 47 with a = 1. Then

s =

[

t

2

√

1 + t2 +
1

2
ln
∣

∣

∣
t+
√

1 + t2
∣

∣

∣

]2

0

=
√
5 +

1

2
ln |2 +

√
5| − 0

=
√
5 +

1

2
ln(2 +

√
5) .

9. We begin by finding the derivatives
dx

dt
and

dy

dt
.

dx

dt
= 4 cos t and

dy

dt
= −4 sin t

The curve is smooth for −π

2
≤ t ≤ π

2
. Using the arc length formula, we have

s =

∫ π/2

−π/2

√

(4 cos t)2 + (−4 sin t)2 dt

=

∫ π/2

−π/2

4 dt

= [4t]
π/2
−π/2

= 4
(π

2

)

− 4
(

−π

2

)

= 4π .

11. We begin by finding the derivatives
dx

dt
and

dy

dt
.

dx

dt
= 2 cos t and

dy

dt
= −2 sin t
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The curve is smooth for 0 ≤ t ≤ 2π. Using the arc length formula, we have

s =

∫ 2π

0

√

(2 cos t)2 + (−2 sin t)2 dt

=

∫ 2π

0

2 dt

= [2t]
2π
0

= 2 (2π)− 2 (0)

= 4π .

13. (a) We begin by finding the derivatives
dx

dt
and

dy

dt
.

dx

dt
= −4 sin(2t) and

dy

dt
= 2t

The curve is smooth for 0 ≤ t ≤ 2π. Using the arc length formula, we have

s =

∫ 2π

0

√

(−4 sin(2t))2 + (2t)2 dt .

(b) Using a Computer Algebra system to compute this integral, we find that s ≈ 44.527 .
(c)

15. (a) We begin by finding the derivatives
dx

dt
and

dy

dt
.

dx

dt
= 2t and

dy

dt
=

1

2
(t+ 2)−1/2

The curve is smooth for −2 ≤ t ≤ 2. Using the arc length formula, we have

s =

∫ 2

−2

√

(2t)2 +

(

1

2
√
t+ 2

)2

dt .

Note that this is an improper integral because of the discontinuity at t = −2.

(b) Using a Computer Algebra system to compute this integral, we find that s ≈ 8.429 .
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(c)

17. (a) We begin by finding the derivatives
dx

dt
and

dy

dt
.

dx

dt
= −3 sin t− 3 sin(3t) and

dy

dt
= 3 cos t− 3 cos(3t)

By using a Computer Algebra system, we find that
dx

dt
and

dy

dt
are simultaneously 0 on 0 < t < 2π

when t =
π

2
, π,

3π

2
so the curve is not smooth on [0, 2π]. To find the arc length, we will exploit

symmetry and find the arc length on the interval
[

0,
π

2

]

(where the curve is smooth) and then

quadruple it. Using the arc length formula, the full arc length is

s = 4 ·
∫ π/2

0

√

(−3 sin t− 3 sin(3t))2 + (3 cos t− 3 cos(3t))2 dt .

(b) Using a Computer Algebra system to compute this integral, we find that s = 24 .
(c)

19. x(t) = 3t2 y(t) = 6t

Begin by finding the derivatives
dx

dt
and

dy

dt
.

dx

dt
= 6t

dy

dt
= 6
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Use the formula for the surface area of the solid of revolution generated by revolving the curve
C about the x-axis.

S = 2π

∫ b

a

y(t)

√

(

dx

dt

)2

+

(

dy

dt

)2

dt

= 2π

∫ 1

0

6t
√

(6t)2 + 62 dt

= 72π

∫ 1

0

t
√

t2 + 1 dt

Let u = t2 + 1. Then du = 2t dt or t dt =
du

2
. The lower limit of integration becomes u =

02 + 1 = 1 and the upper limit of integration becomes u = 12 + 1 = 2. Therefore,

S = 72π

∫ 1

0

t
√

t2 + 1 dt = 72π

∫ 1

0

√

t2 + 1t dt

= 72π

∫ 2

1

√
u
du

2
= 36π

∫ 2

1

√
udu = 36π

[

u3/2

3/2

]2

1

= 24π
(

2
√
2− 1

)

.

21. x(t) = cos3 t y(t) = sin3 t

Begin by finding the derivatives
dx

dt
and

dy

dt
.

dx

dt
= −3 sin t cos2 t

dy

dt
= 3 cos t sin2 t

Use the formula for the surface area of the solid of revolution generated by revolving the curve
C about the x-axis.

S = 2π

∫ b

a

y(t)

√

(

dx

dt

)2

+

(

dy

dt

)2

dt

= 2π

∫ π/2

0

sin3 t

√

(−3 sin t cos2 t)
2
+
(

3 cos t sin2 t
)2

dt

= 2π

∫ π/2

0

sin3 t
√

9 sin2 t cos4 t+ 9 cos2 t sin4 t dt

= 2π

∫ π/2

0

3 sin3 t sin t cos t
√

cos2 t+ sin2 t dt

= 6π

∫ π/2

0

sin4 t cos t dt since cos2 t+ sin2 t = 1

Let u = sin t. Then du = cos t dt. The lower limit of integration becomes u = sin 0 = 0 and the

upper limit of integration becomes u = sin
π

2
= 1.

Therefore,

S = 6π

∫ π/2

0

sin4 t cos t dt

= 6π

∫ 1

0

u4 du

= 6π

[

1

5
u5

]1

0

=
6π

5
(1− 0)

=
6π

5
.
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23. x(t) = 3t2 y(t) = 2t3

Begin by finding the derivatives
dx

dt
and

dy

dt
.

dx

dt
= 6t

dy

dt
= 6t2

Use the formula for the surface area of the solid of revolution generated by revolving the curve
C about the y-axis.

S = 2π

∫ b

a

x(t)

√

(

dx

dt

)2

+

(

dy

dt

)2

dt

= 2π

∫ 1

0

3t2
√

(6t)2 + (6t2)2 dt

= 2π

∫ 1

0

3t2
√

36t2 + 36t4 dt

= 2π

∫ 1

0

(

3t2
)

(6t)
√

1 + t2 dt

= 36π

∫ 1

0

t3
√

1 + t2 dt

Let u =
√
1 + t2. Then u2 = 1+ t2, 2u du = 2t dt, and u du = t dt. The lower limit of integration

becomes u =
√
1 + 02 = 1 and the upper limit of integration becomes u =

√
1 + 12 =

√
2.

Therefore,

S = 36π

∫ 1

0

t3
√

1 + t2 dt = 36π

∫ 1

0

t2
√

1 + t2 t dt

= 36π

∫

√
2

1

(

u2 − 1
)

· u · u du

= 36π

∫

√
2

1

(

u4 − u2
)

du

= 36π

[

1

5
u5 − 1

3
u3

]

√
2

1

= 36π

[(

1

5
· 4

√
2− 1

3
· 2

√
2

)

−
(

1

5
− 1

3

)]

= 36π

(

2

15

√
2 +

2

15

)

=
24

5
π
(√

2 + 1
)

25. x(t) = 2 sin t y(t) = 2 cos t

Begin by finding the derivatives
dx

dt
and

dy

dt
.

dx

dt
= 2 cos t

dy

dt
= −2 sin t
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Use the formula for the surface area of the solid of revolution generated by revolving the curve
C about the y-axis.

S = 2π

∫ b

a

x(t)

√

(

dx

dt

)2

+

(

dy

dt

)2

dt

= 2π

∫ π/2

0

2 sin t

√

(2 cos t)
2
+ (−2 sin t)

2
dt

= 2π

∫ π/2

0

4 sin t
√

cos2 t+ sin2 t dt

= 8π

∫ π/2

0

sin t dt since cos2 t+ sin2 t = 1

= 8π[− cos t]
π/2
0

= −8π
(

cos
π

2
− cos 0

)

= −8π(0− 1) = 8π

Applications and Extensions

27. (a) We begin by finding the derivatives
dx

dt
and

dy

dt
.

dx

dt
= 3b sin2 t cos t and

dy

dt
= −3b cos2 t sin t

The curve is smooth for 0 ≤ t ≤ π

2
. Using the arc length formula, we have

s =

∫ π/2

0

√

(3b sin2 t cos t)2 + (−3b cos2 t sin t)2 dt

=

∫ π/2

0

√

9b2 sin4 cos2 t+ 9b2 cos4 t sin2 t dt

=

∫ π/2

0

√

9b2 sin2 t cos2 t(sin2 t+ cos2 t) dt

=

∫ π/2

0

3b sin t cos t dt.

Using the substitution u = sin t, we have du = cos t dt and the new limits of integration are
u = 0 to u = 1. So the arc length is

s = 3b

∫ 1

0

u du

=

[

3b

2
u2

]1

0

=
3b

2
.
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(b) The following graph shows the case b = 1.

29. We begin by finding the derivatives
dx

dt
and

dy

dt
.

dx

dt
= 3 and

dy

dt
= 2t

The curve is smooth for 0 ≤ t ≤ 2 so the distance traveled by the particle over the time interval
is equal to the arc length over that interval. Using the arc length formula, we have

s =

∫ 2

0

√

(3)2 + (2t)2 dt =

∫ 2

0

√

4

(

9

4
+ t2

)

dt = 2

∫ 2

0

√

9

4
+ t2 dt.

Using the Table of Integrals 47 with a =
3

2
, we find that

s = 2

[

t

2

√

9

4
+ t2 +

9

8
ln

∣

∣

∣

∣

∣

t+

√

9

4
+ t2

∣

∣

∣

∣

∣

]2

0

= 2

[

5

2
+

9

8
ln

∣

∣

∣

∣

9

2

∣

∣

∣

∣

]

− 2

[

9

8
ln

∣

∣

∣

∣

3

2

∣

∣

∣

∣

]

= 5 +
9

4
ln(3) .

31. We begin by finding the derivatives
dx

dt
and

dy

dt
.

dx

dt
= t and

dy

dt
=

√
2t+ 3

The curve is smooth for 0 ≤ t ≤ 2 so the distance traveled by the particle over the time interval
is equal to the arc length over that interval. Using the arc length formula, we have

s =

∫ 2

0

√

(t)2 +
(√

2t+ 3
)2

dt

=

∫ 2

0

√

t2 + 2t+ 3 dt

=

∫ 2

0

√

(t+ 1)2 + 2 dt,

where in the last step we completed the square. If we make a substitution u = t+1, then du = dt
and changing the limits of integration

s =

∫ 3

1

√

u2 + 2 du.
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Using the Table of Integrals 47 with a =
√
2, we find that

s =
[u

2

√

u2 + 2 + ln
∣

∣

∣
u+

√

u2 + 2
∣

∣

∣

]3

1

=

[

3

2

√
11 + ln

∣

∣

∣
3 +

√
11
∣

∣

∣

]

−
[

1

2

√
3 + ln

∣

∣

∣
1 +

√
3
∣

∣

∣

]

=
3
√
11−

√
3

2
+ ln

(

3 +
√
11

1 +
√
3

)

.

33. We begin by finding the derivatives
dx

dt
and

dy

dt
.

dx

dt
= −2 sin(2t) and

dy

dt
= 2 sin t cos t

The curve is smooth for 0 ≤ t ≤ π

2
so the distance traveled by the particle over the time interval

is equal to the arc length over that interval. Using the arc length formula, we have

s =

∫ π/2

0

√

(−2 sin(2t))2 + (2 sin t cos t)2 dt

=

∫ π/2

0

√

4 sin2(2t) + (2 sin t cos t)2 dt.

Using the double angle formula sin(2t) = 2 sin t cos t, we have

s =

∫ π/2

0

√

4 sin2(2t) + sin(2t)2 dt

=

∫ π/2

0

√
5 sin(2t) dt =

[

−
√
5

2
cos(2t)

]π/2

0

= −
√
5

2
(−1) +

√
5

2
(1)

=
√
5 .

35. x(t) = t y(t) = cosh t

Begin by finding the derivatives
dx

dt
and

dy

dt
.

dx

dt
= 1

dy

dt
= sinh t
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Use the formula for the surface area of the solid of revolution generated by revolving the curve
C about the x-axis.

S = 2π

∫ b

a

y(t)

√

(

dx

dt

)2

+

(

dy

dt

)2

dt

= 2π

∫ b

a

cosh t

√

12 + (sinh t)2dt

= 2π

∫ b

a

cosh t
√

1 + sinh2 t dt

= 2π

∫ b

a

cosh t
√

cosh2 t dt since cosh2 t = 1 + sinh2 t

= 2π

∫ b

a

cosh2 t dt

= 2π

∫ b

a

1

2
[1 + cosh(2t)] dt since cosh2 t =

1

2
[cosh(2t) + 1]

= π

[

1

2
sinh(2t) + t

]b

a

= π

{[

1

2
sinh(2b) + b

]

−
[

1

2
sinh(2a) + a

]}

=
π

2
[sinh(2b)− sinh(2a)]− π(b− a)

37. One arch of the cycloid x(t) = 6(t− sin t), y(t) = 6(1− cos t) is generated on the interval
0 ≤ t ≤ 2π.

Begin by finding the derivatives
dx

dt
and

dy

dt
:
dx

dt
= 6(1− cos t),

dy

dt
= 6 sin t.

Use the formula for the surface area of the solid of revolution generated by revolving the curve
C about the x-axis.

S = 2π

∫ b

a

y(t)

√

(

dx

dt

)2

+

(

dy

dt

)2

dt

= 2π

∫ 2π

0

6(1− cos t)

√

[6(1− cos t)]
2
+ (6 sin t)

2
dt

= 2π

∫ 2π

0

36(1− cos t)
√

1− 2 cos t+ cos2 t+ sin2 t dt

= 72π

∫ 2π

0

(1− cos t)
√
2− 2 cos t dt since cos2 t+ sin2 t = 1

= 72
√
2π

∫ 2π

0

(1− cos t)3/2 dt

= 72
√
2π

∫ 2π

0

[

2 sin2
t

2

]3/2

dt since 1− cos t = 2 sin2
t

2

= 288π

∫ 2π

0

sin3
t

2
dt
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Now use the substitution u =
t

2
and du =

1

2
dt. Then dt = 2 du. The lower limit of integration

becomes u = 0 and the upper limit of integration becomes u =
2π

2
= π. The integral becomes

S = 288π

∫ 2π

0

sin3
t

2
dt = 288π

∫ π

0

sin3 u · 2 du = 576π

∫ π

0

sin3 u du.

The exponent of sinu is 3, a positive, odd integer. Factor sinu from sin3 u and write the rest of
the integrand in terms of cosines.

S = 576π

∫ π

0

sin3 u du = 576π

∫ π

0

sin2 u sinu du = 576π

∫ π

0

(

1− cos2 u
)

sinu du

Now use the substitution v = cosu and dv = − sinu du. Then sinu du = −dv. The lower limit
of integration becomes v = cos 0 = 1 and the upper limit of integration becomes v = cosπ = −1.
Therefore,

S = 576π

∫ π

0

(

1− cos2 u
)

sinu du

= 576π

∫ −1

1

(

1− v2
)

(−dv)

= 576π

∫ 1

−1

(

1− v2
)

dv

= 576π

[

v − 1

3
v3
]1

−1

= 576π

{(

1− 1

3

)

−
[

−1−
(

−1

3

)]}

= 768π

39. For a function y = f(x) on a ≤ x ≤ b representing a smooth curve C, we can parametrize
C by choosing x(t) = t and y(t) = f(t) on the interval a ≤ t ≤ b. It is given that C is smooth

on a ≤ t ≤ b, so we compute the derivatives
dx

dt
and

dy

dt
.

dx

dt
= 1 and

dy

dt
= f ′(t)

The arc length s of C on a ≤ t ≤ b using the arc length formula is

s =

∫ b

a

√

(

dx

dt

)2

+

(

dy

dt

)2

dt =

∫ b

a

√

1 + [f ′(t)]2 dt =

∫ b

a

√

1 + [f ′(x)]2 dx.

For Problems 40-43, we note that since ds approximates s for nearby points, we will compute
ds by the formula ds =

√

(dx)2 + (dy)2 where dx and dy represent that changes in x and y,
respectively, between the nearby points.
41. We start by computing dx and dy.

dx = x(1.2)− x(1) =
√
1.2−

√
1 =

√
1.2− 1

dy = y(1.2)− y(1) = 1.23 − 13 = 0.728.

The arc length s is approximately

s ≈ ds =

√

(
√
1.2− 1)2 + (0.728)2 ≈ 0.7342 .
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To see how this estimate compares to the actual value of

s =

∫ 1.2

1

√

(

dx

dt

)2

+

(

dy

dt

)2

dt,

using a CAS, we find that s ≈ 0.7343.

43. We start by computing dx and dy.

dx = x(0.2)− x(0) = e0.2a − e0a = e0.2a − 1

dy = y(0.2)− y(0) = e0.2b − e0b = e0.2b − 1.

The arc length s is approximately

s ≈ ds =
√

(e0.2a − 1)2 + (e0.2b − 1)2 =
√

e0.4a − 2e0.2a + e0.4b − 2e0.2b + 2 ,

for given values of a and b.

AP
R©

Practice Problems

1. x(t) = 2 sin t y(t) = 1 + et

Begin by finding the derivatives
dx

dt
and

dy

dt
.

dx

dt
= 2 cos t

dy

dt
= et

Using the arc length formula for parametric equations,

s =

∫ b

a

√

(

dx

dt

)2

+

(

dy

dt

)2

dt =

∫ 2

−π

√

(2 cos t)2 + (et)2 dt =

∫ 2

−π

√

4 cos2 t+ e2t dt.

The answer is C.

3. x(t) = cos (2t) y(t) = cos2 t

Begin by finding the derivatives
dx

dt
and

dy

dt
.

dx

dt
= −2 sin (2t)

dy

dt
= −2 cos t sin t

Using the arc length formula for parametric equations,

s =

∫ b

a

√

(

dx

dt

)2

+

(

dy

dt

)2

dt =

∫ π/3

π/4

√

[−2 sin (2t)]2 + (−2 cos t sin t)2 dt.

Using the identity 2 cos t sin t = sin (2t),

s =

∫ b

a

√

(

dx

dt

)2

+

(

dy

dt

)2

=

∫ π/3

π/4

√

[−2 sin (2t)]
2
+ [− sin (2t)]

2
dt =

√
5

∫ π/3

π/4

sin (2t) dt.

Let u = 2t. Then du = 2 dt or dt =
du

2
. The lower limit of integration becomes u = 2 · π

4
=

π

2
and the upper limit of integration becomes u = 2 · π

3
=

2π

3
. Therefore,

s =
√
5

∫ 2π/3

π/2

sin (u)
du

2
=

√
5

2
[− cosu]

2π/3
π/2 =

√
5

2

[

−
(

−1

2

)

− 0

]

=

√
5

4
.

The answer is B.
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9.4 Polar Coordinates

Concepts and Vocabulary

1. In a polar coordinate system, the origin is called the pole , and the polar axis coincides

with the positive x-axis of the rectangular coordinate system.

3. False . A point in polar coordinates has infinitely many representations in polar coordinates
by adding multiples of 2π to the angle to obtain a new, equivalent point.

5. True . If r < 0, then we move r units from the origin in the opposite direction of θ to plot
the point.
7. To convert the point (r, θ) in polar coordinates to a point (x, y) in rectangular coordinates,

use the formulas x = r cos θ and y = r sin θ .

Skill Building

9. A
11. C
13. B
15. A
For Problems 17-20, refer to the following graph.

For Problems 21-24, refer to the following graph.

For Problems 25-32, we use the facts that (r, θ) = (−r, θ ± π) and (r, θ) = (r, θ ± 2πk) for all
non-negative integers k.
25.

(a)

(

5,
2π

3

)

=

(

5,
2π

3
− 2π

)

=

(

5,−4π

3

)

(b)

(

5,
2π

3

)

=

(

−5,
2π

3
+ π

)

=

(

−5,
5π

3

)

(c)

(

5,
2π

3

)

=

(

5,
2π

3
+ 2π

)

=

(

5,
8π

3

)

27.
(a) (−2, 3π) = (2, 3π − π) = (2, 2π) = (2, 2π − 4π) = (2,−2π)

(b) (−2, 3π) = (−2, 3π − 2π) = (−2, π)

(c) (−2, 3π) = (2, 3π − π) = (2, 2π)
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29.

(a)
(

1,
π

2

)

=
(

1,
π

2
− 2π

)

=

(

1,−3π

2

)

(b)
(

1,
π

2

)

=
(

−1,
π

2
+ π

)

=

(

−1,
3π

2

)

(c)
(

1,
π

2

)

=
(

1,
π

2
+ 2π

)

=

(

1,
5π

2

)

31.

(a)
(

−3,−π

4

)

=
(

3,−π

4
− π

)

=

(

3,−5π

4

)

(b)
(

−3,−π

4

)

=
(

−3,−π

4
+ 2π

)

=

(

−3,
7π

4

)

(c)
(

−3,−π

4

)

=
(

3,−π

4
+ π

)

=

(

3,
3π

4

)

=

(

3,
3π

4
+ 2π

)

=

(

3,
11π

4

)

33.

x = r cos θ = 6 cos
(π

6

)

= 3
√
3

y = r sin θ = 6 sin
(π

6

)

= 3

The rectangular coordinates of the point are
(

3
√
3, 3
)

.

35.

x = r cos θ = −6 cos
(

−π

6

)

= −3
√
3

y = r sin θ = −6 sin
(

−π

6

)

= 3

The rectangular coordinates of the point are
(

−3
√
3, 3
)

.

37.

x = r cos θ = 5 cos
(π

2

)

= 0

y = r sin θ = 5 sin
(π

2

)

= 5

The rectangular coordinates of the point are (0, 5) .

39.

x = r cos θ = 2
√
2 cos

(

−π

4

)

= 2

y = r sin θ = 2
√
2 sin

(

−π

4

)

= −2

The rectangular coordinates of the point are (2,−2) .

41. The point (5, 0) is located on the polar axis θ = 0, 5 units from the origin, so the polar

coordinates of the point are (5, 0) .

43. The point (−2, 2) is in the second quadrant a distance of r =
√

x2 + y2 =
√

(−2)2 + (2)2 =

2
√
2 from the origin. The angle θ satisfies

π

2
≤ θ ≤ π where

θ = tan−1
(y

x

)

+ π = tan−1

(

2

−2

)

+ π = tan−1(−1) + π = −π

4
+ π =

3π

4
.

The polar coordinates of the point are

(

2
√
2,

3π

4

)

.
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45. The point
(√

3, 1
)

is in the first quadrant a distance of r =
√

x2 + y2 =
√

(
√
3)2 + (1)2 = 2

from the origin. The angle θ satisfies 0 ≤ θ ≤ π

2
where

θ = tan−1
(y

x

)

= tan−1

(

1√
3

)

=
π

6
.

The polar coordinates of the point are
(

2,
π

6

)

.

For Problems 46-50, the graph of these points follows Problem 50.

47. The point
(

−
√
3, 1
)

is in the second quadrant a distance of r =
√

x2 + y2 =
√

(−
√
3)2 + (1)2 =

2 from the origin. The angle θ satisfies
π

2
≤ θ ≤ π where

θ = tan−1
(y

x

)

+ π = tan−1

(

1

−
√
3

)

+ π = −π

6
+ π =

5π

6
.

The polar coordinates of the point are

(

2,
5π

6

)

.

49. The point (3, 2) is in the first quadrant a distance of r =
√

x2 + y2 =
√

(3)2 + (2)2 =
√
13

from the origin. The angle θ satisfies 0 ≤ θ ≤ π

2
where

θ = tan−1
( y

x

)

= tan−1

(

2

3

)

.

Using a calculator tan−1

(

2

3

)

≈ 0.588 radians. The polar coordinates of the point are

(√
13, tan−1

(

2

3

))

≈
(√

13, 0.588
)

.

51. If r is fixed at 2, then the set of points are all a distance of 2 units from the origin, forming

a circle of radius 2 centered at the origin, which matches graph (E) .

53. If we multiply both sides by r, the equation becomes r2 = 2r cos θ. Now use the formulas
r2 = x2 + y2 and x = r cos θ to convert the equation to rectangular coordinates.

r2 = 2r cos θ

x2 + y2 = 2x

x2 − 2x+ y2 = 0

(x− 1)2 + y2 = 1

This is a circle of radius 1 centered at (1, 0), which matches graph (F ) .
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55. If we multiply both sides by r, the equation becomes r2 = −2r cos θ. Now use the formulas
r2 = x2 + y2 and x = r cos θ to convert the equation to rectangular coordinates.

r2 = −2r cos θ

x2 + y2 = −2x

x2 + 2x+ y2 = 0

(x+ 1)2 + y2 = 1

This is a circle of radius 1 centered at (−1, 0), which matches graph (H) .

57. If θ is fixed at
3π

4
and r is allowed to vary, the result is a line containing the pole, making

an angle of
3π

4
with the polar axis. Such a line has slope tan

3π

4
= −1, which has rectangular

equation y = −x and matches graph (D) .

59. r = 4 is a circle centered at (0, 0) of radius 4.

61. θ =
π

3
is a line through the origin making an angle of

π

3
with the positive x-axis.

63. r sin θ = 4 is the equivalent of y = 4.
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65. r cos θ = −2 is the equivalent of x = −2.

67. If we multiply both sides of the equation by r, then we have r2 = 2r cos θ. Since r2 = x2+y2

and x = r cos θ, the equation becomes x2 + y2 = 2x. By moving the 2x term to the left side and
completing the square, we have

(x− 1)2 + y2 = 1,

which is a circle centered at (1, 0) with radius 1.

69. If we multiply both sides of the equation by r, then we have r2 = −4r sin θ. Since r2 = x2+y2

and y = r sin θ, the equation becomes x2 + y2 = −4y. By moving the −4y term to the left side
and completing the square, we have

x2 + (y + 2)2 = 4,

which is a circle centered at (0,−2) with radius 2.

71. The polar equation r sec θ = 4 can be rewritten as r = 4 cos θ when cos θ 6= 0. The θ values

where cos θ = 0 are θ =
π

2
+ kπ for some integer k. This is a circle centered at (2, 0) with radius

2, excluding the points where θ =
π

2
+ kπ which is the pole.
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73. The polar equation r csc θ = −2 can be rewritten as r = −2 sin θ when sin θ 6= 0. The θ
values where sin θ = 0 are θ = kπ for some integer k. This is a circle centered at (0,−1) with
radius 1, excluding the points where θ = kπ which is the pole.

75. Substituting x = r cos θ and y = r sin θ, the equation becomes

(r cos θ)2

4
+

(r sin θ)2

9
= 1

9r2 cos2 θ + 4r2 sin2 θ = 36

r2 =
36

9 cos2 θ + 4 sin2 θ

r = 6

√

9 cos2 θ + 4 sin2 θ

9 cos2 θ + 4 sin2 θ
.

77. Substituting r2 = x2 + y2 and x = r cos θ, the equation becomes

r2 − 4r cos θ = 0

r = 4 cos θ .

79. Substituting x = r cos θ and y = r sin θ, the equation becomes

(r cos θ)2 = 1− 4r sin θ

r2 cos2 θ + 4 cos θ − 1 = 0 .

81. Substituting x = r cos θ and y = r sin θ, the equation becomes

(r cos θ)(r sin θ) = 1

r2 =
1

cos θ sin θ

r =

√
cos θ sin θ

cos θ sin θ
.

83. Multiplying both sides by r, we have r2 = r cos θ. Using r2 = x2 + y2 and x = r cos θ, the
equation becomes

x2 + y2 = x

(

x− 1

2

)2

+ y2 =
1

4
,

where we completed the square in the final step.
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85. Multiply both sides by r and use the equations r =
√

x2 + y2 and y = r sin θ.

r3 = r sin θ
(

√

x2 + y2
)3

= y

(x2 + y2)3/2 = y .

87. Multiply both sides by 1− cos θ and use the equations r =
√

x2 + y2 and x = r cos θ.

r − r cos θ = 4
√

x2 + y2 − x = 4 .

89. Substituting r2 = x2 + y2 and θ = tan−1
( y

x

)

the equation becomes

x2 + y2 = tan−1
( y

x

)

tan(x2 + y2) =
y

x

y = x tan
(

x2 + y2
)

.

91. Substituting r =
√

x2 + y2 the equation becomes

√

x2 + y2 = 2

y
√

4− x2 .

93. Substituting θ = tan−1
( y

x

)

the equation becomes

tan
(

tan−1
(y

x

))

= 4

y

x
= 4

y = 4x .

Applications and Extensions

95. (a) Wrigley Field resides at the point (−10, 36) in rectangular coordinates.

(b) The point (−10, 36) lies in the second quadrant so the angle θ satisfies
π

2
≤ θ ≤ π where

θ = tan−1
(y

x

)

+ π = tan−1

(

36

−10

)

+ π ≈ 1.842 radians.

Wrigley Field is r =
√

(−10)2 + (36)2 =
√
1396 = 2

√
349 ≈ 37.363 blocks from the intersection

of Madison and State Streets, so in polar coordinates, Wrigley Field is located approximately at

(37.363, 1.842) .

(c) U.S. Cellular Field resides at the point (−3,−35) in rectangular coordinates.

(d) The point (−3,−35) lies in the third quadrant so the angle θ satisfies π ≤ θ ≤ 3π

2
where

θ = tan−1
(y

x

)

+ π = tan−1

(−35

−3

)

+ π ≈ 4.627 radians.



9.4 Polar Coordinates 1023

U.S. Cellular Field is r =
√

(−3)2 + (−35)2 =
√
1234 ≈ 35.128 blocks from the intersection of

Madison and State Streets, so in polar coordinates, U.S. Cellular Field is located approximately

at (35.128, 4.627) .

97. Since y = r sin θ, the polar equation r sin θ = a converts to y = a in rectangular coordinates,
which is a horizontal line a units above the origin (i.e. above the pole) if a > 0 and |a| units
below the origin (i.e. below the pole) if a < 0.
99. If we multiply the equation on both sides by r, then we have r2 = 2ar sin θ. If we use the
equations r2 = x2 + y2 and y = r sin θ, then the polar equation becomes

x2 + y2 = 2ay

x2 + (y − a)2 = a2

in rectangular coordinates. Since a > 0, then this is the equation of a circle centered at (0, a)
with radius a.
101. If we multiply the equation on both sides by r, then we have r2 = 2ar cos θ. If we use the
equations r2 = x2 + y2 and x = r cos θ, then the polar equation becomes

x2 + y2 = 2ax

(x − a)2 + y2 = a2

in rectangular coordinates. Since a > 0, then this is the equation of a circle centered at (a, 0)
with radius a.
103. (a) The smallest circle is r1, the middle circle is r2, and the largest circle is r3.

(b) Answers will vary.
(c) The smallest circle is r1, the middle circle is r2, and the largest circle is r3.

(d) Answers will vary.
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Challenge Problems

105. If we multiply both sides of the equation by r, then the equation becomes r2 = ar sin θ +
br cos θ. Now if we use the equations r2 = x2 + y2, x = r cos θ, nd y = r sin θ, then the polar
equation becomes

x2 + y2 = ay + bx

x2 − bx+ y2 − ay = 0

x2 − bx+
b2

4
− b2

4
+ y2 − ay +

a2

4
− a2

4
= 0

(

x− b

2

)2

+
(

y − a

2

)2

=
a2 + b2

4
.

This is the equation of a circle centered at

(

b

2
,
a

2

)

of radius

√
a2 + b2

2
.

107. Consider the following picture.

From the point (r2, θ2), drop a perpendicular to the segment connecting the pole and the point

(r1, θ1). If we denote the length of the perpendicular by h, then the area of the triangle is
1

2
r1h.

The angle θ = θ2 − θ1 and then we have the equation sin θ =
h

r2
or h = r2 sin θ. Using these

equations, the area of the triangle is

1

2
r1r2 sin(θ2 − θ1).

AP
R©

Practice Problems

1. The point P =

(

2,
5

6
π

)

is located by first drawing the angle
5

6
π. Then P is on the

extension of the terminal side of θ =
5

6
π through the pole at a distance 2 units from the

pole, as shown in the figure below.



9.5 Polar Equations; Parametric Equations of Polar
Equations; Arc Length of Polar Equations

1025

The point P is also on the extension of the terminal side of θ = −7

6
π through the pole at

a distance 2 units from the pole, as shown in the figure below. So, P =

(

2,−7

6
π

)

.

The point P is also on the extension of the terminal side of θ = −1

6
π through the pole at

a distance 2 units in the opposite direction from the pole, as shown in the figure below.

So, P =

(

−2,−1

6
π

)

.

The answer is B.

3. We use the equations x = r cos θ and y = r sin θ with r = −1 and θ =
π

2
.

x = −1 cos
π

2
= −1(0) = 0

y = −1 sin
π

2
= −1(1) = −1

The rectangular coordinates are (0,−1).

The answer is D.

5. To convert the equation r = −2 cos θ to rectangular coordinates, we multiply the equation
by r to obtain r2 = −2r cos θ. Since r2 = x2 + y2 and x = r cos θ, we have

r2 = −2r cos θ

x2 + y2 = −2x

x2 + 2x+ y2 = 0

x2 + 2x+ 1 + y2 = 1

(x+ 1)2 + y2 = 1

This is the standard form of the equation of a circle with its center at (−1, 0) and radius 1
in rectangular coordinates.

The answer is A.

9.5 Polar Equations; Parametric Equations of Polar
Equations; Arc Length of Polar Equations

Concepts and Vocabulary

1. True .

3. True . The rose has eight petals.



1026 Chapter 9 Parametric Equations; Polar Equations

Skill Building

5. (a) The polar equation r = 2+2 cosθ contains cos θ, which has the period 2π. We construct
a table of common values of θ that range from 0 to 2π, plot the points (r, θ) = (2 + 2 cos θ, θ),
and trace out the graph, beginning at the point (4, 0) and ending at (4, 2π).

θ 0
π

6

π

4

π

3

π

2

2π

3

(r, θ) (4, 0)
(

2 +
√
3,

π

6

) (

2 +
√
2,

π

4

) (

3,
π

3

) (

2,
π

2

)

(

1,
2π

3

)

θ
3π

4

5π

6
π

7π

6

5π

4

4π

3

(r, θ)

(

2−
√
2,

3π

4

) (

2−
√
3,

5π

6

)

(0, π)

(

2−
√
3,

7π

6

) (

2−
√
2,

5π

4

) (

1,
4π

3

)

θ
3π

2

5π

3

7π

4

11π

6
2π

(r, θ)

(

2,
3π

2

) (

3,
5π

3

) (

2 +
√
2,

7π

4

) (

2 +
√
3,

11π

6

)

(4, 2π)

(b) Parametric equations for r = 2 + 2 cos θ:

x = r cos θ = 2(1 + cos θ) cos θ y = r sin θ = 2(1 + cos θ) sin θ

where θ is the parameter, and if 0 ≤ θ ≤ 2π, then the graph is traced out exactly once in the
counterclockwise direction.
7. (a) The polar equation r = 4− 2 cosθ contains cos θ, which has the period 2π. We construct
a table of common values of θ that range from 0 to 2π, plot the points (r, θ) = (4 − 2 cos θ, θ),
and trace out the graph, beginning at the point (2, 0) and ending at (2, 2π).

θ 0
π

6

π

4

π

3

π

2

2π

3

(r, θ) (2, 0)
(

4−
√
3,

π

6

) (

4−
√
2,

π

4

) (

3,
π

3

) (

4,
π

2

)

(

5,
2π

3

)

θ
3π

4

5π

6
π

7π

6

5π

4

4π

3

(r, θ)

(

4 +
√
2,

3π

4

) (

4 +
√
3,

5π

6

)

(6, π)

(

4 +
√
3,

7π

6

) (

4 +
√
2,

5π

4

) (

5,
4π

3

)

θ
3π

2

5π

3

7π

4

11π

6
2π

(r, θ)

(

4,
3π

2

) (

3,
5π

3

) (

4−
√
2,

7π

4

) (

4−
√
3,

11π

6

)

(2, 2π)
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(b) Parametric equations for r = 4− 2 cos θ:

x = r cos θ = (4− 2 cos θ) cos θ y = r sin θ = (4− 2 cos θ) sin θ

where θ is the parameter, and if 0 ≤ θ ≤ 2π, then the graph is traced out exactly once in the
counterclockwise direction.
9. (a) The polar equation r = 1+ 2 sin θ contains sin θ, which has the period 2π. We construct
a table of common values of θ that range from 0 to 2π, plot the points (r, θ) = (1 + 2 sin θ, θ),
and trace out the graph, beginning at the point (1, 0) and ending at (1, 2π).

θ 0
π

6

π

4

π

3

π

2

2π

3

(r, θ) (1, 0)
(

2,
π

6

) (

1 +
√
2,

π

4

) (

1 +
√
3,

π

3

) (

3,
π

2

)

(

1 +
√
3,

2π

3

)

θ
3π

4

5π

6
π

7π

6

5π

4

4π

3

(r, θ)

(

1 +
√
2,

3π

4

) (

2,
5π

6

)

(1, π)

(

0,
7π

6

) (

1−
√
2,

5π

4

) (

1−
√
3,

4π

3

)

θ
3π

2

5π

3

7π

4

11π

6
2π

(r, θ)

(

−1,
3π

2

) (

1−
√
3,

5π

3

) (

1−
√
2,

7π

4

) (

0,
11π

6

)

(1, 2π)

(b) Parametric equations for r = 1 + 2 sin θ:

x = r cos θ = (1 + 2 sin θ) cos θ y = r sin θ = (1 + 2 sin θ) sin θ

where θ is the parameter, and if 0 ≤ θ ≤ 2π, then the graph is traced out exactly once in the
counterclockwise direction.
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11. (a) The polar equation r = sin(3θ) contains sin(3θ), which has period
2π

3
. So we construct

a table of common values for θ that range from 0 ≤ θ ≤ 2π, noting that the values
2π

3
≤ θ ≤ 4π

3

and
4π

3
≤ θ ≤ 2π repeat the values for 0 ≤ θ ≤ 2π

3
. Then we plot the points and trace out the

graph.

θ 0
π

6

π

4

π

3

π

2

2π

3

(r, θ) (0, 0)
(

1,
π

6

)

(√
2

2
,
π

4

)

(

0,
π

3

) (

−1,
π

2

)

(

0,
2π

3

)

θ
3π

4

5π

6
π

7π

6

5π

4

4π

3

(r, θ)

(√
2

2
,
3π

4

)

(

1,
5π

6

)

(0, π)

(

−1,
7π

6

)

(

−
√
2

2
,
5π

4

)

(

0,
4π

3

)

θ
3π

2

5π

3

7π

4

11π

6
2π

(r, θ)

(

1,
3π

2

) (

0,
5π

3

)

(

−
√
2

2
,
7π

4

)

(

−1,
11π

6

)

(0, 2π)

(b) Parametric equations for r = sin(3θ):

x = r cos θ = sin(3θ) cos θ y = r sin θ = sin(3θ) sin θ

where θ is the parameter, and if 0 ≤ θ ≤ 2π, then the graph is traced out exactly once in the
counterclockwise direction.
13. To find the points of intersection, where 0 ≤ θ ≤ 2π, set both polar equations equal.

8 cos θ = 2 sec θ

4 cos2 θ = 1

cos θ = ±1

2

θ =
π

3
,
2π

3
,
5π

3
,
7π

3
.
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The points of intersection are

(

8 cos
(π

3

)

,
π

3

)

=
(

4,
π

3

)

(

8 cos

(

2π

3

)

,
2π

3

)

=

(

−4,
2π

3

)

(

8 cos

(

4π

3

)

,
4π

3

)

=

(

−4,
4π

3

)

(

8 cos

(

5π

3

)

,
5π

3

)

=

(

4,
5π

3

)

.

Notice that the first and third points are the same, and the second and fourth points are the
same, so the two unique points of intersection are

P =
(

4,
π

3

)

and Q =

(

4,
5π

3

)

.

15. To find the points of intersection, where 0 ≤ θ ≤ 2π, set both polar equations equal.

sin θ = 1 + cos θ

sin θ − cos θ = 1

(sin θ − cos θ)2 = 12

sin2 θ − 2 sin θ cos θ + cos2 θ = 1

sin θ cos θ = 0

sin θ = 0 or cos θ = 0

θ = 0, π, 2π,
π

2
,
3π

2
.

By squaring both sides in the third step, we may have introduced extraneous solutions, so we

need to check all of them. The values θ = 0, 2π,
3π

2
do not make sin θ = 1 + cos θ, so our only

values of intersection are when θ = π,
π

2
. The points of intersection are

P = (sin (π) , π) = (0, π)

Q =
(

sin
(π

2

)

,
π

2

)

=
(

1,
π

2

)

.
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17. To find the points of intersection, where 0 ≤ θ ≤ 2π, set both polar equations equal.

1 + sin θ = 1 + cos θ

sin θ = cos θ

tan θ = 1

θ =
π

4
,
5π

4
.

We also note that both polar curves go through the pole, so the pole is another point of inter-
section. The points of intersection are the pole, R, and

P =
(

1 + sin
(π

4

)

,
π

4

)

=

(

1 +

√
2

2
,
π

4

)

Q =

(

1 + sin

(

5π

4

)

,
5π

4

)

=

(

1−
√
2

2
,
5π

4

)

.

19. We use the arc length formula s =

∫ β

α

√

r2 +

(

dr

dθ

)2

dθ with r = eθ/2. Then
dr

dθ
=

1

2
eθ/2

and

s =

∫ 2

0

√

(eθ/2)2 +

(

1

2
eθ/2

)2

dθ =

∫ 2

0

√

5

4
eθ dθ =

√
5

2

∫ 2

0

eθ/2 dθ

=

√
5

2

[

2eθ/2
]2

0
=

√
5 (e− 1) .
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21. We use the arc length formula s =

∫ β

α

√

r2 +

(

dr

dθ

)2

dθ with r = cos2
θ

2
. Then

dr

dθ
=

−cos
θ

2
sin

θ

2
and

s =

∫ π

0

√

(

cos2
θ

2

)2

+

(

− cos
θ

2
sin

θ

2

)2

dθ =

∫ π

0

√

cos4
θ

2
+ cos2

θ

2
sin2

θ

2
dθ

=

∫ π

0

√

cos2
θ

2

(

cos2
θ

2
+ sin2

θ

2

)

dθ =

∫ π

0

cos
θ

2
dθ

=

[

2 sin
θ

2

]π

0

= 2 ,

where in the second line we are using that cos
θ

2
≥ 0 on [0, π] when taking the square root.

Applications and Extensions

23. r = 3 + 3 cos θ

25. r = 4 + sin θ

27. Since r = f(θ) = 2 cos(3θ), we have the parametrization x(θ) = 2 cos(3θ) cos θ and y(θ) =

2 cos(3θ) sin θ. Now we find
dx

dθ
and

dy

dθ
using the product rule.

dx

dθ
= −6 sin(3θ) cos θ − 2 cos(3θ) sin θ

dy

dθ
= −6 sin(3θ) sin θ + 2 cos(3θ) cos θ.

The slope of the tangent line is then

[

dy

dx

]

θ=π/6

=

[−6 sin(3θ) sin θ + 2 cos(3θ) cos θ

−6 sin(3θ) cos θ − 2 cos(3θ) sin θ

]

θ=π/6

=

√
3

3
.

The rectangular coordinates of the point (x, y) to write the equation of the tangent line at are

x
(π

6

)

= 0

y
(π

6

)

= 0.

The equation of the tangent line is

y − 0 =

√
3

3
(x− 0)

y =

√
3

3
x .
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29. Since r = f(θ) = 2 + cos θ, we have the parametrization x(θ) = (2 + cos θ) cos θ and

y(θ) = (2 + cos θ) sin θ. Now we find
dx

dθ
and

dy

dθ
using the product rule.

dx

dθ
= − sin θ cos θ − (2 + cos θ) sin θ

dy

dθ
= − sin θ sin θ + (2 + cos θ) cos θ.

The slope of the tangent line is then

[

dy

dx

]

θ=π/4

=

[− sin θ sin θ + (2 + cos θ) cos θ

− sin θ cos θ − (2 + cos θ) sin θ

]

θ=π/4

=
√
2− 2.

The rectangular coordinates of the point (x, y) to write the equation of the tangent line at are

x
(π

4

)

=
√
2 +

1

2

y
(π

4

)

=
√
2 +

1

2
.

The equation of the tangent line is

y −
(√

2 +
1

2

)

= (
√
2− 2)

(

x−
(√

2 +
1

2

))

y = (
√
2− 2)x+

5
√
2

2
− 1

2
.
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31. Since r = f(θ) = 4 + 5 sin θ, we have the parametrization x(θ) = (4 + 5 sin θ) cos θ and

y(θ) = (4 + 5 sin θ) sin θ. Now we find
dx

dθ
and

dy

dθ
using the product rule.

dx

dθ
= 5 cos θ cos θ − (4 + 5 sin θ) sin θ

dy

dθ
= 5 cos θ sin θ + (4 + 5 sin θ) cos θ.

The slope of the tangent line is then

[

dy

dx

]

θ=π/4

=

[

5 cos θ sin θ + (4 + 5 sin θ) cos θ

5 cos θ cos θ − (4 + 5 sin θ) sin θ

]

θ=π/4

= −5
√
2

4
− 1.

The rectangular coordinates of the point (x, y) to write the equation of the tangent line at are

x
(π

4

)

= 2
√
2 +

5

2

y
(π

4

)

= 2
√
2 +

5

2
.

The equation of the tangent line is

y −
(

2
√
2 +

5

2

)

=

(

−5
√
2

4
− 1

)

(

x−
(

2
√
2 +

5

2

))

y = −
(

1 +
5
√
2

4

)

x+
57

√
2

8
+ 10 .

33. (a)
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(b) The equation r2 = 4 sin(2θ) can be rewritten as r = ±2
√

sin(2θ). Besides orientation, the
± does not affect the graph of the lemniscate, so one set of parametric equations would be:

x = r cos θ = 2
√

sin(2θ) cos θ y = r sin θ = 2
√

sin(2θ) sin θ

where θ is the parameter.
35. (a)

(b) The equation r2 = cos(2θ) can be rewritten as r = ±
√

cos(2θ). Besides orientation, the ±
does not affect the graph of the lemniscate, so one set of parametric equations would be:

x = r cos θ =
√

cos(2θ) cos θ y = r sin θ =
√

cos(2θ) sin θ

where θ is the parameter.

37. (a) The polar equation r =
2

1− cos θ
contains cos θ, which has the period 2π. We construct

a table of common values of θ that range from 0 to 2π (excluding these values since r is not
defined there) and plot the points (r, θ).

θ 0
π

6

π

4

π

3

π

2

2π

3

(r, θ) undefined

(

4

2−
√
3
,
π

6

) (

4

2−
√
2
,
π

4

)

(

4,
π

3

) (

2,
π

2

)

(

4

3
,
2π

3

)

θ
3π

4

5π

6
π

7π

6

5π

4

4π

3

(r, θ)

(

4√
2 + 2

,
3π

4

) (

4√
3 + 2

,
5π

6

)

(1, π)

(

4√
3 + 2

,
7π

6

) (

4√
2 + 2

,
5π

4

) (

4

3
,
4π

3

)

θ
3π

2

5π

3

7π

4

11π

6
2π

(r, θ)

(

2,
3π

2

) (

4,
5π

3

) (

4

2−
√
2
,
7π

4

) (

4

2−
√
3
,
11π

6

)

undefined
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(b) Parametric equations for the polar equation r =
2

1− cos θ
are

x =
2 cos θ

1− cos θ

y =
2 sin θ

1− cos θ
.

39. (a) The polar equation r =
1

3− 2 cos θ
contains cos θ, which has the period 2π. We

construct a table of common values of θ that range from 0 to 2π (excluding the values of θ such
that 3− 2 cos θ = 0, however there are none) and plot the points (r, θ).

θ 0
π

6

π

4

π

3

π

2

2π

3

(r, θ) (1, 0)

(

1

3−
√
3
,
π

6

) (

1

3−
√
2
,
π

4

) (

1

2
,
π

3

) (

1

3
,
π

2

) (

1

4
,
2π

3

)

θ
3π

4

5π

6
π

7π

6

5π

4

4π

3

(r, θ)

(

1

3 +
√
2
,
3π

4

) (

1

3 +
√
3
,
5π

6

) (

1

5
, π

) (

1

3 +
√
3
,
7π

6

) (

1

3 +
√
2
,
5π

4

) (

1

4
,
4π

3

)

θ
3π

2

5π

3

7π

4

11π

6
2π

(r, θ)

(

1

3
,
3π

2

) (

1

2
,
5π

3

) (

1

3−
√
2
,
7π

4

) (

1

3−
√
3
,
11π

6

)

(1, 2π)

(b) Parametric equations for the polar equation r =
1

3− 2 cos θ
are

x =
cos θ

3− 2 cos θ

y =
sin θ

3− 2 cos θ
.
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41. (a) Constructing a table of common values for θ > 0, we find some points on the polar
graph r = θ.

θ
π

6

π

4

π

3

π

2

2π

3

(r, θ)
(π

6
,
π

6

) (π

4
,
π

4

) (π

3
,
π

3

) (π

2
,
π

2

)

(

2π

3
,
2π

3

)

θ
3π

4

5π

6
π

7π

6

5π

4

4π

3

(r, θ)

(

3π

4
,
3π

4

) (

5π

6
,
5π

6

)

(π, π)

(

7π

6
,
7π

6

) (

5π

4
,
5π

4

) (

4π

3
,
4π

3

)

θ
3π

2

5π

3

7π

4

11π

6
2π

(r, θ)

(

3π

2
,
3π

2

) (

5π

3
,
5π

3

) (

7π

4
,
7π

4

) (

11π

6
,
11π

6

)

(2π, 2π)

(b) Parametric equations for the polar equation r = θ are

x = θ cos θ

y = θ sin θ .

43. (a) Constructing a table of common values for θ between 0 and 2π (excluding 0, π, and 2π
which make r undefined), we find some points on the polar graph r = csc θ − 2.

θ
π

6

π

4

π

3

π

2

2π

3

3π

4

5π

6

(r, θ)

(

0,
π

6

) (

−2 +
√
2,

π

4

)

(

2
√
3

3
− 2,

π

3

)

(

−1,
π

2

)

(

2
√
3

3
− 2,

2π

3

)

(

−2 +
√
2,

3π

4

) (

0,
5π

6

)

θ
7π

6

5π

4

4π

3

3π

2

5π

3

7π

4

11π

6

(r, θ)

(

−4,
7π

6

) (

−2 −
√
2,

5π

4

)

(

−
2
√
3

3
− 2,

4π

3

)

(

−3,
3π

2

)

(

−
2
√
3

3
− 2,

5π

3

)

(

−2 −
√
2,

7π

4

) (

−4,
11π

6

)
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(b) Parametric equations for the polar equation r = csc θ − 2 are

x = (csc θ − 2) cos θ

y = (csc θ − 2) sin θ .

45. (a) The polar equation r = sin θ tan θ contains sin θ, which has the period 2π. We construct

a table of common values of θ that range from 0 to 2π (excluding the values
π

2
and

3π

2
since r

is not defined there) and plot the points (r, θ).

θ 0
π

6

π

4

π

3

π

2

2π

3

(r, θ) (0, 0)

(√
3

6
,
π

6

) (√
2

2
,
π

4

)

(

3

2
,
π

3

)

undefined

(

−3

2
,
2π

3

)

θ
3π

4

5π

6
π

7π

6

5π

4

4π

3

(r, θ)

(

−
√
2

2
,
3π

4

) (

−
√
3

6
,
5π

6

)

(0, π)

(

−
√
3

6
,
7π

6

) (

−
√
2

2
,
5π

4

)

(

−3

2
,
4π

3

)

θ
3π

2

5π

3

7π

4

11π

6
2π

(r, θ) undefined

(

3

2
,
5π

3

)

(√
2

2
,
7π

4

) (√
3

6
,
11π

6

)

(0, 2π)

(b) Parametric equations for the polar equation r = sin θ tan θ are

x = sin θ tan θ cos θ = sin2 θ

y = sin θ tan θ sin θ = sin2 θ tan θ .

47. (a) The polar equation r = tan θ contains tan θ, which has the period π. We construct a

table of common values of θ that range from 0 to 2π (excluding θ =
π

2
and θ =

3π

2
since r is

not defined there), noting that π ≤ θ ≤ 2π duplicates the values taken on 0 ≤ θ ≤ π, and plot
the points (r, θ).
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θ 0
π

6

π

4

π

3

π

2

2π

3

(r, θ) (0, 0)

(√
3

3
,
π

6

)

(

1,
π

4

) (√
3,

π

3

)

undefined

(

−
√
3,

2π

3

)

θ
3π

4

5π

6
π

7π

6

5π

4

4π

3

(r, θ)

(

−1,
3π

4

)

(

−
√
3

3
,
5π

6

)

(0, π)

(√
3

3
,
7π

6

)

(

1,
5π

4

) (√
3,

4π

3

)

θ
3π

2

5π

3

7π

4

11π

6
2π

(r, θ) undefined

(

−
√
3,

5π

3

) (

−1,
7π

4

)

(

−
√
3

3
,
11π

6

)

(0, 2π)

(b) Parametric equations for the polar equation r = tan θ are

x = tan θ cos θ = sin θ

y = sin θ tan θ .

49. First we recall that for a polar point (r, θ), by adding π to the angle θ and changing the
sign of r, we arrive at the same point. In other words, (r, θ) = (−r, θ + π). To show that
r1 = 4(cos θ+1) has the same graph as r2 = 4(cos θ− 1), we will show that every point on r1 is
also on r2, and vice versa.
Recalling the angle addition formula for cosine, we have

cos(θ + π) = cos θ cosπ − sin θ sinπ = − cos θ.

If (r, θ) is a point on the graph of r1, then r1(θ) = r and

r2(θ + π) = 4(cos(θ + π)− 1) = 4(− cos θ − 1) = −4(cos θ + 1) = −r1(θ) = −r

and so (−r, θ + π) = (r, θ) is also a point on the graph of r2.
If (r, θ) is a point on the graph of r2, then r2(θ) = r and

r1(θ + π) = 4(cos(θ + π) + 1) = 4(− cos θ + 1) = −4(cos θ − 1) = −r2(θ) = −r

and so (−r, θ + π) = (r, θ) is also a point on the graph of r1.

51. We use the arc length formula s =

∫ β

α

√

r2 +

(

dr

dθ

)2

dθ with r = θ. Then
dr

dθ
= 1 and

s =

∫ 2π

0

√

(θ)2 + (1)
2
dθ =

[

θ

2

√

θ2 + 1 +
1

2
ln
∣

∣

∣
θ +

√

θ2 + 1
∣

∣

∣

]2π

0

,
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where we have used the Table of Integrals 49 with a = 1. Then

s = π
√

4π2 + 1 +
1

2
ln
(

2π +
√

4π2 + 1
)

.

53. The perimeter of the cardioid is found by calculating the arc length of the cardioid over the
interval [−π, π]. We will exploit symmetry and find the length s of the top half of the cardioid

using the arc length formula s =

∫ β

α

√

r2 +

(

dr

dθ

)2

dθ with r = 1 − cos θ and then double it.

With the function r = 1− cos θ, we have
dr

dθ
= sin θ and

s =

∫ π

0

√

(1 − cos θ)2 + (sin θ)
2
dθ =

∫ π

0

√
2− 2 cos θ dθ.

Let u = 2− 2 cos θ and then du = 2 sin θ dθ. Solving for cos θ in the first equation, we have

cos θ =
2− u

2
.

Using the Pythagorean Identity cos2 θ + sin2 θ = 1, on the interval 0 ≤ θ ≤ π we find that

sin θ =

√
4u− u2

2
=

√
u
√
4− u

2
,

and so

du = 2 sin θ dθ
1√

u
√
4− u

du = dθ.

Changing the limits of integration to u = 2− 2 cos(0) = 0 to u = 2− 2 cosπ = 4, the integral for
s becomes

s =

∫ 4

0

√
u · 1√

u
√
4− u

du =

∫ 4

0

1√
4− u

du.

Another substitution, w = 4−u with dw = −du, the limits of integration change to w = 4−(0) =
4 to w = 4− (4) = 0, and we have

s =

∫ 0

4

− 1√
w

dw =

∫ 4

0

1√
w

dw.

Notice that this is an improper integral. So

s = lim
b→0+

∫ 4

b

1√
w

dw

= lim
b→0+

[

2
√
w
]4

b
= lim

b→0+

[

4−
√
b
]

= 4.

Since the top half of the cardioid has length 4, the full cardioid has perimeter equal to 8 .
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55. The graphs below, from left to right and top to bottom, are r1, r2, r3, r4.

For Problems 56-61, using the parameterizations x(θ) = r cos θ = f(θ) cos θ and y(θ) = r sin θ =

f(θ) sin θ we can find
dy

dx
=

dy
dθ
dx
dθ

. Then we have a horizontal tangent line if
dy

dθ
= 0 and

dx

dθ
6= 0,

and we have a vertical tangent line if
dx

dθ
= 0 and

dy

dθ
6= 0.

57. Parametric equations for r = 3 + 3 cos θ are

x = (3 + 3 cos θ) cos θ y = (3 + 3 cos θ) sin θ

and

dy

dθ
= (−3 sin θ) sin θ + (3 + 3 cos θ) cos θ = −3 sin2 θ + 3 cos θ + 3 cos2 θ = 6 cos2 θ + 3 cos θ − 3

= 3(cos θ + 1)(2 cos θ − 1)

dx

dθ
= (−3 sin θ) cos θ − (3 + 3 cos θ) sin θ = −3 sin θ cos θ − 3 sin θ − 3 cos θ sin θ

= − sin θ(6 cos θ + 3).

Horizontal Tangent Lines on 0 ≤ θ ≤ 2π:

dy

dθ
= 0

3(cos θ + 1)(2 cos θ − 1) = 0

cos θ + 1 = 0 or 2 cos θ − 1 = 0

θ = π,
π

3
,
5π

3
.
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Notice that θ = π makes
dx

dθ
= 0 so we must exclude it but the others do not make

dx

dθ
zero. The

y-coordinates of the points corresponding to θ =
π

3
and

5π

3
are

9
√
3

4
and −9

√
3

4
, respectively.

The horizontal tangent lines are then y =
9
√
3

4
and y = −9

√
3

4
.

Vertical Tangent Lines on 0 ≤ θ ≤ 2π:

dx

dθ
= 0

− sin θ(6 cos θ + 3) = 0

− sin θ = 0 or 6 cos θ + 3 = 0

θ = 0, π, 2π,
2π

3
,
4π

3
.

Notice that θ = π makes
dy

dθ
= 0 so we must exclude it but the others do not make

dy

dθ
zero.

The x-coordinates of the points corresponding to θ = 0, 2π,
2π

3
, and

4π

3
are 6, 6, −3

4
, and −3

4
,

respectively. The vertical tangent lines are then x = 6 and x = −3

4
.

59. Parametric equations for r = 2 cos(2θ) are

x = (2 cos(2θ)) cos θ y = (2 cos(2θ)) sin θ

and

dy

dθ
= (−4 sin(2θ)) sin θ + (2 cos(2θ)) cos θ

dx

dθ
= (−4 sin(2θ)) cos θ − (2 cos(2θ)) sin θ.

Horizontal Tangent Lines: Using a CAS to find where
dy

dθ
= 0, we find that

θ =
π

2
,
3π

2
, tan−1

( √
6√
30

)

,− tan−1

( √
6√
30

)

,− tan−1

( √
6√
30

)

+ π, tan−1

( √
6√
30

)

− π. None of

these values make
dx

dθ
= 0. The y-coordinates of the points corresponding to

θ =
π

2
,
3π

2
, tan−1

( √
6√
30

)

,− tan−1

( √
6√
30

)

,− tan−1

( √
6√
30

)

+ π, tan−1

( √
6√
30

)

− π are

−2, 2,
4

3
√
6
,− 4

3
√
6
,

4

3
√
6
,− 4

3
√
6
, respectively. The horizontal tangent lines are then y = ±2

and y ± 4

3
√
6
.

Vertical Tangent Lines: Using a CAS to find where
dx

dθ
= 0, we find that

θ = 0, π, 2π, tan−1
(√

5
)

,− tan−1
(√

5
)

+ π,− tan−1
(√

5
)

, tan−1
(√

5
)

− π. None of these

values make
dy

dθ
= 0. The x-coordinates of the points corresponding to

θ = 0, π, 2π, tan−1
(√

5
)

,− tan−1
(√

5
)

+ π,− tan−1
(√

5
)

, tan−1
(√

5
)

− π are

2,−2, 2,
4

3
√
6
,

4

3
√
6
,− 4

3
√
6
,− 4

3
√
6
, respectively. The vertical tangent lines are then x = ±2

and x = ± 4

3
√
6
.
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61. In Problem 33, we found parametric equations for r2 = 4 sin(2θ).

x = r cos θ = 2
√

sin(2θ) cos θ y = r sin θ = 2
√

sin(2θ) sin θ, sin(2θ) > 0.

Using a CAS to find the derivatives,

dx

dθ
=

2 cos θ
(

4 cos2 θ − 3
)

√

sin(2θ)

dy

dθ
=

2 sin θ
(

4 cos2 θ − 1
)

√

sin(2θ)
.

Horizontal Tangent Lines: Using a CAS to find where
dy

dθ
= 0 on 0 ≤ θ ≤ 2π where sin(2θ) > 0,

we find that θ =
π

3
,
4π

3
. Neither of these values make

dx

dθ
= 0. The y-coordinates of the points

corresponding to θ =
π

3
,
4π

3
are 33/4

√
2

2
and −33/4

√
2

2
, respectively. The horizontal tangent

lines are then y = ±33/4√
2

.

Vertical Tangent Lines: Using a CAS to find where
dx

dθ
= 0 on 0 ≤ θ ≤ 2π where sin(2θ) > 0,

we find that θ =
π

6
,
7π

6
. Neither of these values make

dy

dθ
= 0. The x-coordinates of the points

corresponding to θ =
π

6
,
7π

6
are 33/4

√
2

2
and −33/4

√
2

2
, respectively. The vertical tangent lines

are then x = ±33/4√
2

.

63. (a) Answers will vary.
(b) Since r2 = (−r)2, we have (−r)2 = r2 = 4 sin(2θ) and so the lemniscate is symmetric with
respect to the pole.

Challenge Problems

65. Symmetry with respect to the pole: Substituting θ + π for θ and using the angle addition
formula for sine, we have

r = sin(2(θ + π)) = sin(2θ + 2π)

r = sin(2θ) cos(2π) + sin(2π) cos(2θ)

r = sin(2θ),

and an equivalent equation results implying that the graph is symmetric with respect to the
pole.
Symmetry with respect to the polar axis: Substituting −θ for θ and recalling that sin θ is an
odd function, we have

r = sin(−2θ)

r = − sin(2θ),

which is not an equivalent equation so the test fails.
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67. (a)

(b) The graph intersects the pole when r = 0. Setting 4 sin(5θ) = 0 we see that 5θ = πn for
any integer n, or

θ =
n

5
π.

We seek the smallest positive value of θ, which is when n = 1. So α =
1

5
π .

(c) The arc length of the petal is given by

s =

∫ π/5

0

√

(4 sin(5θ))2 + (20 cos(5θ))2 dθ.

Using a CAS, we find that s ≈ 8.404 .

AP
R©

Practice Problems

1. We obtain parametric equations for r = 1 + cos θ by using the conversion formulas

x = r cos θ and y = r sin θ.

x = r cos θ = (1 + cos θ) cos θ and y = r sin θ = (1 + cos θ) sin θ.

Then

dx

dθ
=

d

dθ
[(1 + cos θ) cos θ] = (1 + cos θ)(− sin θ) + (cos θ)(− sin θ) = − sin θ − 2 cos θ sin θ,

dy

dθ
=

d

dθ
[(1 + cos θ) sin θ] = (1 + cos θ)(cos θ) + (sin θ)(− sin θ) = cos θ + cos2 θ − sin2 θ,

and
dy

dx
=

dy
dθ
dx
dθ

=
cos θ + cos2 θ − sin2 θ

− sin θ − 2 cos θ sin θ
.

At θ =
π

6
,

dy

dx
=

cos π
6 +

(

cos π
6

)2 −
(

sin π
6

)2

− sin π
6 − 2 cos π

6 sin π
6

=

√
3
2 +

(√
3
2

)2

−
(

1
2

)2

− 1
2 − 2

(√
3
2

)

(

1
2

)

=

√
3 + 1

−1−
√
3
= −

√
3 + 1

1 +
√
3
= −1.

The answer is A.

3. Obtain parametric equations for r = 5θ by using the conversion formulas x = r cos θ and
y = r sin θ.

x = r cos θ = 5θ cos θ and y = r sin θ = 5θ sin θ.

The answer is A.
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5. Use the arc length formula s =

∫ β

α

√

r2 +

(

dr

dθ

)2

dθ with r = 4e3θ/2,
dr

dθ
= 6e3θ/2,∝= 0,

and β = ln 9.

s =

∫ β

α

√

r2 +

(

dr

dθ

)2

dθ

=

∫ ln 9

0

√

(

4e3θ/2
)2

+
(

6e3θ/2
)2

dθ

=

∫ ln 9

0

√

16e3θ + 36e3θ dθ

=
√
52

∫ ln 9

0

e3θ/2 dθ

=
2

3

√
52

[

(

e3θ/2
)2
]ln 9

0

=
2

3

√
52
(

e3 ln 9/2 − 1
)

=
4

3

√
13
[

93/2 − 1
]

=
104

3

√
13

The answer is C.

9.6 Area in Polar Coordinates

Note: Throughout this assignment, we will be integrating sin2(aθ) or cos2(aθ) frequently. To

integrate them we use the formulas sin2(aθ) =
1− cos(2aθ)

2
and cos2(aθ) =

1 + cos(2aθ)

2
. With

these formulas, we have

∫

sin2(aθ) dθ =
1

2
θ − 1

4a
sin(2aθ) =

1

2
θ − 1

2a
cos(aθ) sin(aθ)

∫

cos2(aθ) dθ =
1

2
θ +

1

4a
sin(2aθ) =

1

2
θ +

1

2a
cos(aθ) sin(aθ)

Each problem in which the above equations are used will be marked with an asterisk (*).

Concepts and Vocabulary

1. The area A of a sector of a circle of radius r and central angle θ is A =
1

2
r2θ .

3. False . The area is given by A =

∫ β

α

1

2
[f(θ)]

2
dθ.

Skill Building

5*. The area of the shaded region in quadrant I equals one-fourth of the area A of the shaded
region. The area of the shaded region in quadrant I is equal to the area of the non-shaded region
inside the rose in quadrant I which is swept out starting at θ = 0 and, by symmetry, ends at

θ =
π

4
. The area of the non-shaded region in quadrant I is given by

∫ π/4

0

1

2
r2 dθ, and the area

A we seek is 4 times this area,
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A = 4

∫ π/4

0

1

2
r2 dθ = 2

∫ π/4

0

cos2(2θ) dθ

=

[

θ +
1

2
cos(2θ) sin(2θ)

]π/4

0

=
π

4
.

7*. The shaded region is swept out beginning with the ray θ = 0 and ending with the ray θ = π.

The area A of the shaded region is then equal to

∫ π

0

1

2
r2 dθ.

A =

∫ π

0

1

2
r2 dθ =

∫ π

0

1

2
(2 + 2 sin θ)2 dθ = 2

∫ π

0

(1 + 2 sin θ + sin2 θ) dθ

= [−4 cos θ + 3θ − sin θ cos θ]
π
0 = 8 + 3π .

9*.

The area A of the shaded region is equal to

∫ π/3

0

1

2
r2 dθ.

A =

∫ π/3

0

1

2
r2 dθ =

∫ π/3

0

1

2
(3 cos θ)2 dθ =

9

2

∫ π/3

0

cos2 θ dθ

=

[

9

4
θ +

9

4
cos θ sin θ

]π/3

0

=
9
√
3

16
+

3π

4

=
3

16

(

3
√
3 + 4π

)

.

11.

[The graph shown is when a = 1.] The area A of the shaded region is equal to

∫ 2π

0

1

2
r2 dθ.

A =

∫ 2π

0

1

2
r2 dθ =

∫ 2π

0

1

2
(aθ)2 dθ =

a2

2

∫ 2π

0

θ2 dθ

=

[

a2

6
θ3
]2π

0

=
4π3a2

3
.
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13*.

The area A of the shaded region is equal to

∫ 2π

0

1

2
r2 dθ.

A =

∫ 2π

0

1

2
r2 dθ =

∫ 2π

0

1

2
(1 + cos θ)

2
dθ =

1

2

∫ 2π

0

(1 + 2 cos θ + cos2 θ) dθ

=

[

3

4
θ + sin θ +

1

4
cos θ sin θ

]2π

0

=
3π

2
.

15*.

The area A of the shaded region is equal to

∫ 2π

0

1

2
r2 dθ.

A =

∫ 2π

0

1

2
r2 dθ =

∫ 2π

0

1

2
(3 + sin θ)2 dθ =

1

2

∫ 2π

0

(9 + 6 sin θ + sin2 θ) dθ

=

[

19

4
θ − 3 cos θ − 1

4
cos θ sin θ

]2π

0

=
19π

2
.
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17*.

Exploiting symmetry, we will find the area A of the petal in quadrant I (see the second picture)

which is swept out beginning with the ray θ = 0 and ending at the ray θ =
π

3
and then triple it

to find the full area of the rose. The area A of the petal in quadrant I is equal to

∫ π/3

0

1

2
r2 dθ.

A =

∫ π/3

0

1

2
r2 dθ =

∫ π/3

0

1

2
(8 sin(3θ))

2
dθ = 32

∫ π/3

0

sin2(3θ) dθ

=

[

16θ − 16

3
sin(3θ) cos(3θ)

]π/3

0

=
16π

3
.

The total area of the full rose is then 3 · 16π
3

= 16π .

19*.

The area A of the petal in quadrant I (see the second picture) is swept out beginning with the

ray θ = 0 and ending at the ray θ =
π

2
so A is equal to

∫ π/2

0

1

2
r2 dθ.

A =

∫ π/2

0

1

2
r2 dθ =

∫ π/2

0

1

2
(4 sin(2θ))

2
dθ = 8

∫ π/2

0

sin2(2θ) dθ

= [4θ − 2 sin(2θ) cos(2θ)]π/20 = 2π .



1048 Chapter 9 Parametric Equations; Polar Equations

21.

The area A of the half-petal in quadrant I (see the second picture) is swept out beginning with

the ray θ = 0 and ending at the ray θ =
π

4
so A is equal to

∫ π/4

0

1

2
r2 dθ.

A =

∫ π/4

0

1

2
r2 dθ =

∫ π/4

0

1

2
(4 cos(2θ)) dθ = 2

∫ π/4

0

cos(2θ) dθ

= [sin(2θ)]
π/4
0 = 1.

Then a full petal has area 2 · 1 = 2 .
23*.

Referring to the picture we need to find the intersection points of the two circles, so we set them
equal.

2 sin θ = 1

sin θ =
1

2

θ =
π

6
,
5π

6
.

Then

A =

∫ 5π/6

π/6

1

2
(2 sin θ)2 dθ −

∫ 5π/6

π/6

1

2
(1)2 dθ

=

[

−1

2
sin θ cos θ +

1

2
θ

]5π/6

π/6

−
[

1

2
θ

]5π/6

π/6

=

√
3

2
+

2π

3
− π

3
=

√
3

2
+

π

3
.
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25*.

Referring to the picture we can see that the shaded region is swept out beginning with θ = 0

and ending at θ =
π

2
. Then the area A of the shaded region is

A =

∫ π/2

0

1

2
(sin θ)2 dθ −

∫ π/2

0

1

2
(1− cos θ)2 dθ

=
1

2

∫ π/2

0

(sin2 θ − 1 + 2 cos θ − cos2 θ) dθ

=
1

2

∫ π/2

0

(− cos(2θ)− 1 + 2 cos θ) dθ

=
1

2

[

−1

2
sin(2θ)− θ + 2 sin θ

]π/2

0

= 1− π

4
.

27*. Using formula (1) with f(θ) = sin θ and f ′(θ) = cos θ, the surface area S is

S = 2π

∫ π/2

0

(sin θ) sin θ

√

[sin θ]
2
+ [cos θ]

2
dθ

= 2π

∫ π/2

0

sin2 θ dθ

= 2π

[

1

2
θ − 1

2
cos θ sin θ

]π/2

0

= 2π

(

1

4
π

)

=
π2

2
.

29. Using formula (1) with f(θ) = eθ and f ′(θ) = eθ, the surface area S is

S = 2π

∫ π

0

(eθ) sin θ

√

[

eθ
]2

+
[

eθ
]2

dθ = 2
√
2π

∫ π

0

e2θ sin θ dθ

= 2
√
2π

[

e2θ

5
(2 sin θ − cos θ)

]π

0

=
2
√
2π

5

(

e2π + 1
)

,

where we used Table of Integrals 122.



1050 Chapter 9 Parametric Equations; Polar Equations

Applications and Extensions

31*. To find the area of the small loop, we need to find the values of θ that sweep out the inner
loop. We need to find when the polar curve intersects with the pole, so we set r = 0.

1 + 2 cos θ = 0

cos θ = −1

2

θ =
2π

3
,
4π

3
.

The two graphs show the full limaçon and just the small loop (zoomed in).

The area A of the small loop is

A =

∫ 4π/3

2π/3

1

2
(1 + 2 cos θ)

2
dθ =

1

2

∫ 4π/3

2π/3

(1 + 4 cos θ + 4 cos2 θ) dθ

=

[

3

2
θ + 2 sin θ + cos θ sin θ

]4π/3

2π/3

= π − 3
√
3

2
.

33. The two graphs show the full graph and the loop.

To find the area of loop, we need to find the values of θ that sweep out the loop. We need to
find when the polar curve intersects with the pole, so we set r = 0.

2− sec θ = 0

sec θ = 2

θ = ±π

3
.
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The area A of the small loop is

A =

∫ π/3

−π/3

1

2
(2− sec θ)

2
dθ =

1

2

∫ π/3

−π/3

(4− 4 sec θ + sec2 θ) dθ

=

[

2θ − 2 ln | sec θ + tan θ|+ 1

2
tan θ

]π/3

−π/3

=

(

2π

3
− 2 ln

(

2 +
√
3
)

+

√
3

2

)

−
(

−2π

3
− 2 ln

(

2−
√
3
)

−
√
3

2

)

=
4π

3
− 2 ln

(

2 +
√
3

2−
√
3

)

+
√
3 =

4π

3
− 2 ln

(

(2 +
√
3)2
)

+
√
3

=
4π

3
− 4 ln(2 +

√
3) +

√
3 .

35.

Exploting symmetry, we will find the area A of the regions in the first and second quadrant, and
then double that area. The area in the first two quadrants is swept out starting at the ray θ = 0
and ending at θ = π. Then

A =

∫ π

0

1

2

[

2 sin2
θ

2

]2

dθ = 2

∫ π

0

sin4
θ

2
dθ.

Using the substitution u =
θ

2
and changing the limits of integration,

A = 4

∫ π/2

0

sin4 u du

= 4

[

−1

4
sin3 u cosu− 3

8
cosu sinu+

3

8
u

]π/2

0

=
3π

4
,

where to compute the integral we used Table of Integrals 82 & 88. Then the full shaded region

has area equal to 2 · 3π
4

=
3π

2
.
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37*.

We need to find the angles that sweep out the shaded region so we set the equations equal.

8 cos θ = 2 sec θ

cos2 θ =
1

4

cos θ = ±1

2

θ = ±π

3
, ±2π

3
.

The shaded region is swept out beginning with θ = −π

3
and ending at θ =

π

3
. The area A of

the shaded region is then

A =

∫ π/3

−π/3

1

2
(8 cos θ)2 dθ −

∫ π/3

−π/3

1

2
(2 sec θ)2 dθ =

∫ π/3

−π/3

(32 cos2 θ − 2 sec2 θ) dθ

= [16 cos θ sin θ + 16θ− 2 tan θ]
π/3
−π/3 = 4

√
3 +

32π

3
.

39*.

We need to find the angles that sweep out the shaded region so we set the equations equal.

2 + 2 cos θ = 3

cos θ =
1

2

θ = ±π

3
.
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The shaded region is swept out beginning with θ = −π

3
and ending at θ =

π

3
. The area A of

the shaded region is then

A =

∫ π/3

−π/3

1

2
(2 + 2 cos θ)2 dθ −

∫ π/3

−π/3

1

2
(3)2 dθ =

∫ π/3

−π/3

(

−5

2
+ 4 cos θ + 2 cos2 θ

)

dθ

=

[

−3

2
θ + 4 sin θ + cos θ sin θ

]π/3

−π/3

=
9
√
3

2
− π .

41*.

Exploiting symmetry, we will find the area of the shaded region in quadrant I and then double it
to find the full shaded area. Referring to the second picture, the shaded region in quadrant I can
be divided by the ray from the pole through the intersection point of the two curves. The angle
that represents the ray through the intersection point can be found by setting the equations
equal.

cos θ = 1− cos θ

cos θ =
1

2

θ =
π

3
.

The shaded region in quadrant I can then be found by finding the area of the shaded region on
[

0,
π

3

]

of the cardioid and then adding the area of the shaded region on
[π

3
,
π

2

]

of the circle.

This means the area A in quadrant I is

A =

∫ π/3

0

1

2
(1 − cos θ)2 dθ +

∫ π/2

π/3

1

2
(cos θ)2 dθ

=

∫ π/3

0

(

1

2
− cos θ +

1

2
cos2 θ

)

dθ +

∫ π/2

π/3

1

2
cos2 θ dθ

=

[

3

4
θ − sin θ +

1

4
cos θ sin θ

]π/3

0

+

[

1

4
θ +

1

4
cos θ sin θ

]π/2

π/3

=

[

π

4
− 7

√
3

16

]

+

[

π

24
−

√
3

16

]

=
7π

24
−

√
3

2
.

Then the full shaded area is

2 ·
(

7π

24
−

√
3

2

)

=
7π

12
−
√
3 .
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43*.

First we find the intersection points by setting the equations equal.

1 + cos θ = 1 + sin θ

cos θ = sin θ

θ =
π

4
,
5π

4
.

The area A of the shaded region is swept out beginning with the ray θ =
π

4
and ending with the

ray θ =
5π

4
. Then

A =

∫ 5π/4

π/4

1

2
(1 + sin θ)2 dθ −

∫ 5π/4

π/4

1

2
(1 + cos θ)2 dθ =

∫ 5π/4

π/4

(

sin θ − cos θ +
1

2
sin2 θ − 1

2
cos2 θ

)

dθ

=

[

− cos θ − sin θ − 1

2
sin θ cos θ

]5π/4

π/4

= 2
√
2 .

45. Using the area formula, the enclosed area A is

A =

∫ 1

0

1

2
(e−θ)2 dθ =

∫ 1

0

1

2
e−2θ dθ

=

[

−1

4
e−2θ

]1

0

=
1− e−2

4
.

47. Using the area formula, the area A enclosed is

A =

∫ π

1

1

2

(

1

θ

)2

dθ =

∫ π

1

1

2
θ−2 dθ

=

[

−1

2
θ−1

]π

1

=
π − 1

2π
.

49.
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We need to find when the polar curve intersects with the pole, so we set r = 0.

2 + sec θ = 0

cos θ = −1

2

θ =
2π

3
,
4π

3
.

The area A of the loop is

A =

∫ 4π/3

2π/3

1

2
(2 + sec θ)2 dθ =

∫ 4π/3

2π/3

(

1

2
sec2 θ + 2 sec θ + 2

)

dθ

=

[

1

2
tan θ + 2 ln | sec θ + tan θ|+ 2θ

]4π/3

2π/3

=
√
3 +

4π

3
+ 2 ln

(

2−
√
3

2 +
√
3

)

=
√
3 +

4π

3
− 4 ln

(

2 +
√
3
)

.

51. (a)

If we rotate the top half of the circle r = R about the polar axis for T ≤ θ ≤ π−T , then we will
have the surface of the bead. Using formula (1) with f(θ) = R, f ′(θ) = 0, and T ≤ θ ≤ π − T ,
the surface area S of the bead is

S = 2π

∫ π−T

T

R sin θ

√

[R]
2
+ [0]

2
dθ = 2πR2

∫ π−T

T

sin θ dθ

= 2πR2 [− cos θ]
π−T
T = 2πR2 [− cos(π − T ) + cos(T )] .

From the picture, we see that cos(T ) =

√
R2 − a2

R
and so − cos(π − T ) =

√
R2 − a2

R
. Then

S = 2πR2 · 2
√
R2 − a2

R
= 4πR

√

R2 − a2 .

(b) Answers will vary.
53*. We first find where the curve intersects the pole by setting r = 0.

sec θ − 2 cos θ = 0

1− 2 cos2 θ = 0

cos2 θ =
1

2

cos θ = ±
√
2

2

θ = −π

4
,
π

4
.
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From the picture we see that the shaded region is swept out beginning with θ = −π

4
and ending

with θ =
π

4
. So the area A of the shaded region is

A =
1

2

∫ π/4

−π/4

1

2
(sec θ − 2 cos θ)

2
dθ =

∫ π/4

−π/4

(

1

2
sec2 θ − 2 + 2 cos2 θ

)

dθ

=

[

1

2
tan θ − θ + sin θ cos θ

]π/4

−π/4

= 2− π

2
.

Challenge Problems

55. The area enclosed by the graph rθ = a and the rays θ = θ1 and θ = θ2 is

∫ θ2

θ1

1

2

(a

θ

)2

dθ =
a2

2

∫ θ2

θ1

θ−2 dθ

=
a2

2

[

−θ−1
]θ2

θ1
=

a2

2

(

1

θ1
− 1

θ2

)

=
a

2

(

a

θ1
− a

θ2

)

=
a

2
(r1 − r2) .

Since
a

2
is a constant, we see that the area is a constant multiple of (i.e. proportional to) r1− r2.

57.

To find the area of the shaded region in the first figure, we will exploit symmetry and find the

area A of the shaded region in the second figure and multiply it by eight to find the area we
seek. We must first find the intersection point P of the rose and circle.

3 sin(2θ) = 2

sin(2θ) =
2

3

2θ = sin−1

(

2

3

)

θ =
1

2
sin−1

(

2

3

)

.

Then the area A is swept out beginning at θ = 0 and ending at θ =
1

2
sin−1

(

2

3

)

, so

A =

∫ 1/2 sin−1(2/3)

0

1

2
(2)2 dθ −

∫ 1/2 sin−1(2/3)

0

1

2
(3 sin(2θ))2 dθ =

∫ 1/2 sin−1(2/3)

0

(

2− 9

2
sin2(2θ) dθ

)

=

[

−1

4
θ +

9

8
sin(2θ) cos(2θ)

]1/2 sin−1(2/3)

0

=

√
5

4
− 1

8
sin−1

(

2

3

)

.
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Multiplying this value by eight, we have the area we sought.

8

(√
5

4
− 1

8
sin−1

(

2

3

)

)

= 2
√
5− sin−1

(

2

3

)

.

AP
R©

Practice Problems

1. The graph of r = 2− cos θ is pictured below.

Note that for θ =
π

2
, r = 2− cos

π

2
= 2 and for θ = π, r = 2− cosπ = 3.

Therefore, the interval
π

2
≤ θ ≤ π sweeps out the region in the second quadrant enclosed

by the graph of r = 2− cos θ.

Use the area formula A =

∫ β

α

1

2
r2 dθ with r = 2− cos θ, ∝=

π

2
, and β = π.

A =

∫ β

α

1

2
r2 dθ

=

∫ π

π/2

1

2
(2− cos θ)

2
dθ

=
1

2

∫ π

π/2

(

4− 4 cos θ + cos2 θ
)

dθ

=
1

2

{

4θ − 4 sin θ +
1

2

[

θ +
1

2
sin (2θ)

]}π

π/2

=
1

2

[

9

2
θ − 4 sin θ +

1

4
sin (2θ)

]π

π/2

=
1

2

[(

9

2
π − 0 + 0

)

−
(

9

4
π − 4 + 0

)]

=
9

8
π + 2

The answer is D.
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3. The graph of r = cos (2θ) is pictured below.

The interval −π

4
≤ θ ≤ π

4
sweeps out one petal region of the rose r = cos (2θ).

Use the area formula A =

∫ β

α

1

2
r2 dθ with r = cos (2θ), ∝= −π

4
, and β =

π

4
.

A =

∫ β

α

1

2
r2 dθ

=

∫ π/4

−π/4

1

2
[cos (2θ)]

2
dθ

=
1

2

∫ π/4

−π/4

cos2 (2θ) dθ

=
1

2

∫ π/4

−π/4

1

2
[1 + cos (4θ)] dθ

=
1

4

[

θ +
1

4
sin (4θ)

]π/4

−π/4

=
1

4

{[

π

4
+

1

4
sinπ

]

−
[

(

−π

4

)

+
1

4
sin (−π)

]}

=
π

8

The answer is B.

5. (a) Find the points of intersection of the two graphs by solving the equation.

4 cos θ = 2

cos θ =
1

2

θ = −π

3
,
π

3

The two graphs intersect at (r, θ) = (2,−π

3
) and (2,

π

3
) .
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(b) The area of the region that lies outside the circle r = 2 and inside the circle
r = 4 cos θ is

A =
1

2

∫ π/3

−π/3

(4 cos θ)2 dθ − 1

2

∫ π/3

−π/3

22 dθ

=

∫ π/3

−π/3

(

8 cos2 θ − 2
)

dθ

=

∫ π/3

−π/3

{

8 · 1
2
[1 + cos (2θ)]− 2

}

dθ

=

∫ π/3

−π/3

[2 + 4 cos (2θ)] dθ

= [2θ + 2 sin (2θ)]
π/3
−π/3

=

(

2π

3
+ 2 sin

2π

3

)

−
[

−2π

3
+ 2 sin

(

−2π

3

)]

=
4π

3
+ 2

√
3

(c) The area of the region that lies inside the circle r = 2 and outside the circle r = 4 cos θ
is equal to twice the area of the region swept out by the circle r = 2 on the interval
π

3
≤ θ ≤ π minus twice the area of the region swept out by the circle r = 4 cos θ on

the interval
π

3
≤ θ ≤ π

2
.

The area of the region is

A = 2 · 1
2

∫ π

π/3

22 dθ − 2 · 1
2

∫ π/2

π/3

(4 cos θ)
2
dθ

=

∫ π

π/3

4 dθ −
∫ π/2

π/3

16 · 1
2
[1 + cos (2θ)] dθ

= 4[θ]
π
π/3 − 8

[

θ +
1

2
sin (2θ)

]π/2

π/3

= 4
(

π − π

3

)

− 8

{[

π

2
+

1

2
sin (π)

]

−
[

π

3
+

1

2
sin

(

2π

3

)]}

= 4

(

2π

3

)

− 8

[

(

π

2
+

1

2
· 0
)

−
(

π

3
+

1

2
·
√
3

2

)]

=
8π

3
− 4π +

8π

3
+ 2

√
3

=
4π

3
+ 2

√
3
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9.7 The Polar Equation of a Conic

Concepts and Vocabulary

1. A (a) parabola is the set of points P in the plane for which the distance from a fixed point

called the focus P equals the distance from a fixed line called the directrix.

3. In both cases, e = 1, so both graphs are parabolas. Answers will vary.

Skill Building

5. Using Table 9,

r =
1

1 + cos θ

which means e = 1 and p = 1 so we have a parabola where the directrix is perpendicular to

the polar axis 1 unit to the right of the pole.
7. Using Table 9,

r =
4

2− 3 sin θ
=

2

1− 3
2 sin θ

which means e =
3

2
and ep = 2 so p =

4

3
which means we have a hyperbola where the directrix

is parallel to the polar axis
4

3
units below the pole.

9. Using Table 9,

r =
3

4− 2 cos θ
=

3
4

1− 1
2 cos θ

which means e =
1

2
and ep =

3

4
so p =

3

2
which means we have an ellipse where the directrix

is perpendicular to the polar axis
3

2
units to the left of the pole.

11. Using Table 9,

r =
4

3 + 3 sin θ
=

4
3

1 + sin θ

which means e = 1 and ep =
4

3
so p =

4

3
which means we have a parabola where the directrix

is parallel to the polar axis
4

3
units above the pole.

13. (a) Using Table 9,

r =
8

4 + 3 sin θ
=

2

1 + 3
4 sin θ

which means e =
3

4
and ep = 2, so p =

8

3
. Since e < 1, this is an ellipse with directrix parallel

to the polar axis
8

3
units above the pole. At t = 0 and t = π, the polar points corresponding to

these values are (0, 2) and (π, 2), respectively, which are vertices of the ellipse. The y-intercepts

are at θ =
π

2
and θ =

3π

2
, which gives rise to the polar points

(

π

2
,
8

7

)

and

(

3π

2
, 8

)

.
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(b) To obtain a rectangular equation of the ellipse, we eliminate the fraction and then square
the resulting polar equation.

r =
8

4 + 3 sin θ
4r + 3r sin θ = 8

4r = 8− 3r sin θ

16r2 = (8 − 3r sin θ)2

16(x2 + y2) = (8 − 3y)2

16x2 + 16y2 = 64− 48y + 9y2

16x2 + 7

(

y2 +
48

7
y

)

= 64

16x2 + 7

(

y +
24

7

)2

= 64 + 7

(

24

7

)2

16x2 + 7

(

y +
24

7

)2

=
1024

7
.

(c) Parametric equations are

x =
8 cos θ

4 + 3 sin θ
, y =

8 sin θ

4 + 3 sin θ
.

15. (a) Using Table 9,

r =
9

3− 6 cos θ
=

3

1− 2 cos θ

which means e = 2. Since e > 1, this is a hyperbola .

(b) To obtain a rectangular equation of the hyperbola, we eliminate the fraction and then
square the resulting polar equation.

r =
9

3− 6 cos θ
3r − 6r cos θ = 9

3r = 9 + 6r cos θ

9r2 = (9 + 6r cos θ)2

9(x2 + y2) = (9 + 6x)2

9x2 + 9y2 = 81 + 108x+ 36x2

27
(

x2 + 4x
)

− 9y2 = −81

27 (x+ 2)
2 − 9y2 = −81 + 27(4)

3 (x+ 2)2 − y2 = 3 .
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(c) Parametric equations are

x =
9 cos θ

3− 6 cos θ
, y =

9 sin θ

3− 6 cos θ
.

17. (a) Using Table 9,

r =
6

3− 2 sin θ
=

2

1− 2
3 sin θ

which means e =
2

3
and ep = 2, so p = 3. Since e < 1, this is an ellipse with directrix parallel

to the polar axis 3 units below the pole. At t = 0 and t = π, the polar points corresponding to
these values are (0, 2) and (π, 2), respectively, which are vertices of the ellipse. The y-intercepts

are at θ =
π

2
and θ =

3π

2
, which gives rise to the points

(π

2
, 6
)

and

(

3π

2
,
6

5

)

.

(b) To obtain a rectangular equation of the ellipse, we eliminate the fraction and then square
the resulting polar equation.

3r − 2r sin θ = 6

9r2 = (3r)2 = (6 + 2r sin θ)2

9(x2 + y2) = (6 + 2y)2

9x2 + 9y2 = 36 + 24y + 4y2

9x2 + 5

(

y2 − 24

5
y

)

= 36

9x2 + 5

(

y − 12

5

)2

= 36 + 5

(

12

5

)2

9x2 + 5

(

y − 12

5

)2

=
324

5
.

(c) Parametric equations are

x =
6 cos θ

3− 2 sin θ
, y =

6 sin θ

3− 2 sin θ
.

19. (a) Using Table 9,

r =
6 sec θ

2 sec θ − 1
=

6

2− cos θ
=

3

1− 1
2 cos θ

, θ 6= π

2
,
3π

2
,

which means e =
1

2
and ep = 3, so p = 6. Since e < 1, this is an ellipse with directrix

perpendicular to the polar axis 6 units to the left of the pole. At t = 0 and t = π, the polar
points corresponding to these values are (0, 6) and (π, 2), respectively, which are vertices of the

ellipse. The y-intercepts are undefined since the function is undefined at θ =
π

2
and θ =

3π

2
.
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(b) To obtain a rectangular equation of the hyperbola, we eliminate the fraction and then
square the resulting polar equation.

2r − r cos θ = 6

4r2 = (6 + r cos θ)2

4(x2 + y2) = (6 + x)2

4x2 + 4y2 = 36 + 12x+ x2

3(x2 − 4x) + 4y2 = 36

3(x− 2)2 + 4y2 = 36 + 3(2)2

3(x− 2)2 + 4y2 = 48 .

(c) Parametric equations are

x =
6 cos θ

2− cos θ
, y =

6 sin θ

2− cos θ
.

Applications and Extensions

For Problems 21-26, we will use the parametric form of each graph x = r cos θ and y = r sin θ

along with the formula
dy

dx
=

dy
dθ
dx
dθ

to determine the slope at the given value of θ.

21. Parametric equations for r =
9

4− cos θ
are

y =
9 sin θ

4− cos θ

x =
9 cos θ

4− cos θ
,

so
[

dy

dθ

]

θ=0

=

[

(4− cos θ)(9 cos θ)− (9 sin θ)(sin θ)

(4− cos θ)2

]

θ=0

= 3

[

dx

dθ

]

θ=0

=

[

(4− cos θ)(−9 sin θ)− (9 cos θ)(sin θ)

(4− cos θ)2

]

θ=0

= 0.

Since
dx

dθ
= 0, this means

dy

dx
is undefined which means the tangent line at θ = 0 is vertical so

the slope is undefined .

23. Parametric equations for r =
8

4 + sin θ
are

y =
8 sin θ

4 + sin θ

x =
8 cos θ

4 + sin θ
,
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so
[

dy

dθ

]

θ=π/2

=

[

(4 + sin θ)(8 cos θ)− (8 sin θ)(cos θ)

(4 + sin θ)2

]

θ=π/2

= 0

[

dx

dθ

]

θ=π/2

=

[

(4 + sin θ)(−8 sin θ)− (8 cos θ)(cos θ)

(4 + sin θ)2

]

θ=π/2

= −40

25
.

Then
[

dy

dx

]

θ=π/2

=
0

−40/25
= 0

which means the tangent line has slope 0 at θ =
π

2
.

25. Parametric equations for r =
4

2 + cos θ
are

y =
4 sin θ

2 + cos θ

x =
4 cos θ

2 + cos θ
,

so
[

dy

dθ

]

θ=π

=

[

(2 + cos θ)(4 cos θ)− (4 sin θ)(− sin θ)

(2 + cos θ)2

]

θ=π

= −4

[

dx

dθ

]

θ=π

=

[

(2 + cos θ)(−4 sin θ)− (4 cos θ)(− sin θ)

(2 + cos θ)2

]

θ=π

= 0.

Since
dx

dθ
= 0, this means

dy

dx
is undefined which means the tangent line at θ = π is vertical so

the slope is undefined .

27. It is given that e =
4

5
and p = 3, so using Table 9, we have

r =
4
5 · 3

1− 4
5 cos θ

=
12

5− 4 cos θ
.

29. It is given that e = 1 and p = 1, so using Table 9, we have

r =
1 · 1

1 + sin θ
=

1

1 + sin θ
.

31. It is given that e = 6 and p = 2, so using Table 9, we have

r =
6 · 2

1− 6 sin θ
=

12

1− 6 sin θ
.

33. (a) e = 0.967 .
(b) The shortest distance occurs when r is a minimum which occurs when cos θ = −1. The
shortest distance is then

r =
1.155

1− 0.967(−1)
≈ 0.587 AU .

(c) The greatest distance occurs when r is a maximum which occurs when cos θ = 1. The
shortest distance is then

r =
1.155

1− 0.967(1)
= 35 AU .
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(d)

35. (a)
(i)

(ii)

(iii)
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(iv)

(v)

(vi)

(b) Answers will vary.
(c) Answers will vary.
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37.

If we drop a perpendicular from point P to the ray θ =
π

2
, the intersection point of the perpen-

dicular and the ray is labeled Q. The distance from the pole to Q is r sin θ. Since the distance
from the pole to the directrix D is p, the distance d(D,P ) = p− r sin θ. Then since d(F, P ) = r,
the equation of the conic is

d(F, P )

d(D,P )
= e

r

p− r sin θ
= e

r = ep− re sin θ

r(1 + e sin θ) = ep

r =
ep

1 + e sin θ
.

Challenge Problems

39. For the ellipse
x2

a2
+

y2

b2
= 1, the value c =

√

a2 − b2 is the focal distance from the center

and e =
c

a
is the eccentricity. If we use the parametric equations x = a cos θ and y = b sin θ for

0 ≤ θ ≤ π

2
, then this parametrizes the ellipse in the first quadrant. If we rotate this part of the

ellipse about the x-axis to find the surface area S, then

S = 2π

∫ π/2

0

y

√

(

dx

dθ

)2

+

(

dy

dθ

)2

dθ = 2π

∫ π/2

0

b sin θ
√

a2 sin2 θ + b2 cos2 θ dθ

= 2πb

∫ π/2

0

sin θ
√

a2(1− cos2 θ) + b2 cos2 θ dθ

= 2πb

∫ π/2

0

a sin θ

√

1−
(

a2 − b2

a2
cos2 θ

)

dθ.

Now we use the fact that e =

√
a2 − b2

a
. Then

S = 2πab

∫ π/2

0

sin θ
√

1− e2 cos2 θ dθ

= 2πab

∫ 0

e

−1

e

√

1− u2 du,
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where we used the substitution u = e cos θ with du = −e sin θ dθ and new limits of integration
u = e cos(0) = e to u = e cos(π/2) = 0. To calculate this integral, we use Table of Integrals 60
with a = 1.

S =
2πab

e

∫ e

0

√

1− u2 du

=
2πab

e

[

u

2

√

1− u2 +
1

2
sin−1 u

]e

0

=
2πab

e

(

e

2

√

1− e2 +
1

2
sin−1 e

)

= πb2 +
πab

e
sin−1 e,

where in the last step we used that fact that

√

1− e2 =

√

1− a2 − b2

a2
=

√

a2 − a2 + b2

a2
=

b

a
.

Chapter 9 Review Exercises

1. (a) Solving for t in the y equation, we have t = 1− y. Then

x = 4(1− y)− 2

y = −1

4
x+

1

2
.

(b)

(c) There are no restrictions .

3. (a) Since x = et and y = (et)−1, we have y =
1

x
.

(b)

(c) Since et > 0 and e−t > 0, we have x > 0 and y > 0 .
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5. (a) Since tan2 t+ 1 = sec2 t, the rectangular equation is

y + 1 = x .

(b)

(c) On 0 ≤ t ≤ π

4
, 1 ≤ sec t ≤

√
2 and 0 ≤ tan t ≤ 1 so

1 ≤ sec2 t ≤ 2

0 ≤ tan2 t ≤ 1.

The restrictions on x and y are then

1 ≤ x ≤ 2

0 ≤ y ≤ 1 .

7. (a)

dy

dt
= 1

dx

dt
= 2t

The slope of the tangent line is

[

dy

dx

]

t=1

=







dy

dt
dx

dt







t=1

=

[

1

2t

]

t=1

=
1

2
.

The point of tangency is (x(1), y(1)) = (−3, 1). The equation of the tangent line is

y − 1 =
1

2
(x+ 3)

y =
1

2
x+

5

2
.



1070 Chapter 9 Parametric Equations; Polar Equations

(b)

9. (a)

dy

dt
=

1

2
(t2 + 1)−1/2(2t) = t(t2 + 1)−1/2

dx

dt
= −2t−3

The slope of the tangent line is

[

dy

dx

]

t=3

=







dy

dt
dx

dt







t=3

=

[

t(t2 + 1)−1/2

−2t−3

]

t=3

=
3/

√
10

−2/27
= −81

√
10

20
.

The point of tangency is (x(3), y(3)) =

(

1

9
,
√
10

)

. The equation of the tangent line is

y −
√
10 = −81

√
10

20

(

x− 1

9

)

y = − 81

2
√
10

x+
9

2
√
10

+
√
10 .

(b)
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11. Answers will vary. Here are two parameterizations.

x(t) = t, y(t) = −2t+ 4, −∞ < t < ∞

x(t) = t− 2, y(t) = −2t+ 8, −∞ < t < ∞ .

13. We eliminate the parameter t by using the Pythagorean Identity cos2 t + sin2 t = 1. Since

cos t =
x

2
and sin t = y, we have

x2

4
+ y2 = 1 .

The plane curve is below.

When t = 0, the object is at the point (2, 0). As t increases, the object moves around the ellipse
in a counterclockwise direction, taking t = 2π seconds to complete one revolution.
For the graphs of Problems 14-17, see the graph below Problem 17.
15. Converting to rectangular coordinates

x = r cos θ = −2 cos

(

4π

3

)

= 1

y = r sin θ = −2 sin

(

4π

3

)

=
√
3.

The rectangular coordinates are
(

1,
√
3
)

.

17. Converting to rectangular coordinates

x = r cos θ = −4 cos
(

−π

4

)

= −2
√
2

y = r sin θ = −4 sin
(

−π

4

)

= 2
√
2.

The rectangular coordinates are
(

−2
√
2, 2

√
2
)

.
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19. Converting to polar coordinates

r =
√

32 + 42 = 5

θ = tan−1

(

4

3

)

.

One pair of polar coordinates is

(

5, tan−1

(

4

3

))

≈ (5, 0.927) . Another pair is

(

−5, tan−1

(

4

3

)

+ π

)

≈ (−5, 4.068) .

21. Noting that the given point is in quadrant II, when we convert to polar coordinates we have

r =
√

(−3)2 + 32 = 3
√
2

θ = tan−1

(

−3

3

)

+ π =
3π

4
.

One pair of polar coordinates is

(

3
√
2,

3π

4

)

. Another pair is

(

−3
√
2,

7π

4

)

.

23. Using the formulas r =
√

x2 + y2 and θ = tan−1
( y

x

)

, the equation becomes

√

x2 + y2 = etan
−1(y/x)/2

x2 + y2 = etan
−1(y/x)

y

x
= tan

(

ln
(

x2 + y2
))

y = x tan
(

ln
(

x2 + y2
))

.

25. Multiply the equation through by r.

r2 = ar − r sin θ

x2 + y2 = a
√

x2 + y2 − y .

27.

√

x2 + y2 = tan−1
(y

x

)

y = x tan
(

√

x2 + y2
)

.
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29. Using the formulas r2 = x2 + y2, x = r cos θ, and y = r sin θ, the equation becomes

(r2)2 = (r cos θ)2 − (r sin θ)2

r4 = r2(cos2 θ − sin2 θ) (for r 6= 0)

r2 = cos2 θ − sin2 θ (for r 6= 0) .

31. Using the formulas x = r cos θ and y = r sin θ, the equation becomes

(r cos θ)2

4
+

(r sin θ)2

9
= 1

r2
(

cos2 θ

4
+

sin2 θ

9

)

= 1

r2
(

9 cos2 θ + 4 sin2 θ

36

)

= 1

r =
6

√

9 cos2 θ + 4 sin2 θ

r =
6
√

9 cos2 θ + 4 sin2 θ

9 cos2 θ + 4 sin2 θ
.

33. Multiplying by r cos θ, the equation becomes r2 = 2r cos θ which in rectangular coordinates
is x2 + y2 = 2x. Upon completing the square, the equation becomes (x − 1)2 + y2 = 1. We
recognize this as a circle centered at (1, 0) with radius 1.

35. Multiplying by r, the equation becomes r2 = −5r cos θ which in rectangular coordinates is

x2 + y2 = −5x. Upon completing the square, the equation becomes

(

x+
5

2

)2

+ y2 =
25

4
. We

recognize this as a circle centered at

(

−5

2
, 0

)

with radius
5

2
.
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37. (a) The polar equation r = 4 cos(2θ) contains cos(2θ), which has period π. We construct
a table of common values of θ that range from 0 to 2π noting that the values from π to 2π
duplicate those from 0 to π.

θ 0
π

6

π

4

π

3

π

2

2π

3

(r, θ) (4, 0)
(

2,
π

6

) (

0,
π

4

) (

−2,
π

3

) (

−4,
π

2

)

(

−2,
2π

3

)

θ
3π

4

5π

6
π

7π

6

5π

4

4π

3

(r, θ)

(

0,
3π

4

) (

2,
5π

6

)

(4, π)

(

2,
7π

6

) (

0,
5π

4

) (

−2,
4π

3

)

θ
3π

2

5π

3

7π

4

11π

6
2π

(r, θ)

(

−4,
3π

2

) (

−2,
5π

3

) (

0,
7π

4

) (

2,
11π

6

)

(4, 2π)

(b) Parametric equations for r = 4 cos(2θ):

x = r cos θ = 4 cos(2θ) cos θ y = r sin θ = 4 cos(2θ) sin θ

where θ is the parameter, and if 0 ≤ θ ≤ 2π, then the graph is traced out exactly once starting
at (4, 0) and following the arrows in increasing order.
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39. (a) The polar equation r =
4

1− 2 cos θ
contains cos θ, which has the period 2π. We

construct a table of common values of θ that range from 0 to 2π (excluding the values
π

3
and

5

3
π since r is not defined there) and plot the points (r, θ).

θ 0
π

6

π

4

π

3

π

2

2π

3

(r, θ) (−4, 0)

(

4

1−
√
3
,
π

6

) (

4

1−
√
2
,
π

4

)

undefined
(

4,
π

2

)

(

2,
2π

3

)

θ
3π

4

5π

6
π

7π

6

5π

4

4π

3

(r, θ)

(

4

1 +
√
2
,
3π

4

) (

4

1 +
√
3
,
5π

6

) (

4

3
, π

) (

4

1 +
√
3
,
7π

6

) (

4

1 +
√
2
,
5π

4

) (

2,
4π

3

)

θ
3π

2

5π

3

7π

4

11π

6
2π

(r, θ)

(

4,
3π

2

)

undefined

(

4

1−
√
2
,
7π

4

) (

4

1−
√
3
,
11π

6

)

(−4, 2π)

(b) Parametric equations for the polar equation r =
4

1− 2 cos θ
are

x =
4 cos θ

1− 2 cos θ

y =
4 sin θ

1− 2 cos θ
.

41. (a) The polar equation r = 2−2 cosθ contains cos θ, which has the period 2π. We construct
a table of common values of θ that range from 0 to 2π, plot the points (r, θ) = (2 − 2 cos θ, θ),
and trace out the graph, beginning at the point (0, 0) and ending at (0, 2π).
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θ 0
π

6

π

4

π

3

π

2

2π

3

(r, θ) (0, 0)
(

2−
√
3,

π

6

) (

2−
√
2,

π

4

) (

1,
π

3

) (

2,
π

2

)

(

3,
2π

3

)

θ
3π

4

5π

6
π

7π

6

5π

4

4π

3

(r, θ)

(

2 +
√
2,

3π

4

) (

2 +
√
3,

5π

6

)

(4, π)

(

2 +
√
3,

7π

6

) (

2 +
√
2,

5π

4

) (

3,
4π

3

)

θ
3π

2

5π

3

7π

4

11π

6
2π

(r, θ)

(

2,
3π

2

) (

1,
5π

3

) (

2−
√
2,

7π

4

) (

2−
√
3,

11π

6

)

(0, 2π)

(b) Parametric equations for r = 2− 2 cos θ:

x = r cos θ = (2 − 2 cos θ) cos θ y = r sin θ = (2− 2 cos θ) sin θ

where θ is the parameter, and if 0 ≤ θ ≤ 2π, then the graph is traced out exactly once in the
counterclockwise direction.
43. (a) The polar equation r = e0.5θ increases in radius as the angle increases. We construct
a table of common values of θ that range from 0 to 2π, plot the points (r, θ), and trace out the
graph. All decimals in the table are approximate values of r.

θ 0
π

6

π

4

π

3

π

2

2π

3

(r, θ) (1, 0)
(

1.299,
π

6

) (

1.481,
π

4

) (

1.688,
π

3

) (

2.193,
π

2

)

(

2.850,
2π

3

)

θ
3π

4

5π

6
π

7π

6

5π

4

4π

3

(r, θ)

(

3.248,
3π

4

) (

3.702,
5π

6

)

(4.810, π)

(

6.250,
7π

6

) (

7.124,
5π

4

) (

8.121,
4π

3

)

θ
3π

2

5π

3

7π

4

11π

6
2π

(r, θ)

(

10.551,
3π

2

) (

13.708,
5π

3

) (

15.625,
7π

4

) (

17.811,
11π

6

)

(23.141, 2π)
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(b) Parametric equations for r = e0.5θ:

x = r cos θ = e0.5θ cos θ y = r sin θ = e0.5θ sin θ

where θ is the parameter.

45. (a) The equation r2 = 1 + sin2 θ, or r =
√

1 + sin2 θ, contains sin θ which has the period
2π. We construct a table of common values of θ that range from 0 to 2π, plot the points (r, θ).

θ 0
π

6

π

4

π

3

π

2

2π

3

(r, θ) (1, 0)

(√
5

2
,
π

6

) (√
6

2
,
π

4

) (√
7

2
,
π

3

)

(√
2,

π

2

)

(√
7

2
,
2π

3

)

θ
3π

4

5π

6
π

7π

6

5π

4

4π

3

(r, θ)

(√
6

2
,
3π

4

) (√
5

2
,
5π

6

)

(1, π)

(√
5

2
,
7π

6

) (√
6

2
,
5π

4

) (√
7

2
,
4π

3

)

θ
3π

2

5π

3

7π

4

11π

6
2π

(r, θ)

(√
2,

3π

2

)

(√
7

2
,
5π

3

) (√
6

2
,
7π

4

) (√
5

2
,
11π

6

)

(1, 2π)
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(b) Parametric equations for r =
√

1 + sin2 θ:

x = r cos θ =
√

1 + sin2 θ cos θ y = r sin θ =
√

1 + sin2 θ sin θ

where θ is the parameter.

47. (a) Since e =
1

6
< 1, this is an ellipse .

(b) To obtain a rectangular equation of the ellipse, we eliminate the fraction and then square
the resulting polar equation.

r =
1

1− 1
6 cos θ

r − 1

6
r cos θ = 1

r2 =

(

1 +
1

6
r cos θ

)2

x2 + y2 =

(

1 +
1

6
x

)2

x2 + y2 = 1 +
1

3
x+

1

36
x2

35

36

(

x2 − 12

35
x

)

+ y2 = 1

35

36

(

x− 6

35

)2

+ y2 = 1 +
35

36

(

6

35

)2

35

(

x− 6

35

)2

+ 36y2 =
1296

35
.

(c) Parametric equations are

x =
6 cos θ

6− cos θ
, y =

6 sin θ

6− cos θ
.

49. For clockwise orientation, the ellipse can be parametrized by x(t) = 4 sin(ωt), y(t) =

3 cos(ωt). If it takes 5 seconds for one revolution, then the period is
2π

ω
= 5, or ω =

2π

5
.

The parametrization is then

x(t) = 4 sin

(

2π

5
t

)

, y(t) = 3 cos

(

2π

5
t

)

, 0 ≤ t ≤ 5

which has clockwise orientation, and does indeed start at (0, 3) when t = 0.
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51. First we find the derivatives.

dx

dt
= − cos t

dy

dt
= −3 sin t

To find the horizontal tangent lines, we set
dy

dt
= 0.

−3 sin t = 0

t = 0, π, 2π.

None of these values make
dx

dt
= 0, so we have horizontal tangent lines at each value. The

horizontal tangent lines occur at the points

(x(0), y(0)) = (x(2π), y(2π)) = (1, 5)

(x(π), y(π)) = (1,−1) .

To find the vertical tangent lines, we set
dx

dt
= 0.

− cos t = 0

t =
π

2
,
3π

2
.

None of these values make
dy

dt
= 0, so we have vertical tangent lines at each value. The vertical

tangent lines occur at the points

(

x
(π

2

)

, y
(π

2

))

= (0, 2)
(

x

(

3π

2

)

, y

(

3π

2

))

= (2, 2) .

53. We begin by finding the derivatives
dx

dt
and

dy

dt
.

dx

dt
= sec2 t and

dy

dt
=

2

3
sec t sec t tan t =

2

3
sec2 t tan t

The curve is smooth for 0 ≤ t ≤ π

4
. Using the arc length formula, we have

s =

∫ π/4

0

√

(

sec2 t
)2

+

(

2

3
sec2 t tan t

)2

dt

=

∫ π/4

0

√

sec4 t

(

1 +
4

9
tan2 t

)

dt

=

∫ π/4

0

sec2 t

√

1 +
4

9
tan2 t dt.
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Using the substitution u = tan t, then du = sec2 t and the new limits are u = tan(0) = 0 to

u = tan
(π

4

)

= 1, then

s =

∫ 1

0

√

1 +
4

9
u2 du =

∫ 1

0

2

3

√

9

4
+ u2 du

=
2

3

[

u

2

√

9

4
+ u2 +

9/4

2
ln

∣

∣

∣

∣

∣

u+

√

9

4
+ u2

∣

∣

∣

∣

∣

]1

0

=
1

3

√
13

2
+

9

8
ln

(

1 +

√
13

2

)

− 9

8
ln

(√
13

2

)

,

where to compute the integral we used Table of Integrals 47 with a =
3

2
.

55. The given curve can be parametrized by

y(t) = t

x(t) =
1

2
t2 − 1

4
ln t

on 1 ≤ t ≤ 2. We begin by finding the derivatives
dx

dt
and

dy

dt
.

dx

dt
= t− 1

4t
and

dy

dt
= 1

The curve is smooth for 1 ≤ t ≤ 2. Using the arc length formula, we have

s =

∫ 2

1

√

[1]
2
+

[

t− 1

4t

]2

dt =

∫ 2

1

√

1

16
t−2 +

1

2
+ t2 dt

=

∫ 2

1

√

[

1

4
t−1 + t

]2

dt =

∫ 2

1

(

1

4
t−1 + t

)

dt

=

[

1

4
ln |t|+ 1

2
t2
]2

1

= 2 +
1

4
ln(2)− 1

2

=
3

2
+

1

4
ln(2) .

57. Using the arc length formula s =

∫ β

α

√

r2 +

(

dr

dθ

)2

dθ from Section 9.5 with r = e−θ and

dr

dθ
= −e−θ, the arc length is

s =

∫ 2π

0

√

(

e−θ
)2

+
(

−e−θ
)2

dθ =

∫ 2π

0

√
2e−θ dθ

=
[

−
√
2e−θ

]2π

0
=

√
2
(

1− e−2π
)

.
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59. Using the arc length formula s =

∫ β

α

√

r2 +

(

dr

dθ

)2

dθ from Section 9.5 with r = 2 sin2
θ

2
and
dr

dθ
= 2 sin

θ

2
cos

θ

2
, we will exploit symmetry and find the arc length s of the curve from θ = 0

to θ =
π

2
and then double it. Then

s =

∫ π/2

0

√

(

2 sin2
θ

2

)2

+

(

2 sin
θ

2
cos

θ

2

)2

dθ =

∫ π/2

0

√

4 sin4
θ

2
+

(

4 sin4
θ

2
cos2

θ

2

)

dθ

=

∫ π/2

0

2 sin
θ

2
dθ =

[

−4 cos
θ

2

]π/2

0

= 4− 2
√
2.

The full arc length is then

2
(

4− 2
√
2
)

= 8− 4
√
2 .

61.

Exploiting symmetry, we will find the area A of the half-petal in quadrant I (see second figure),
and then multiply it by 8 to find the full shaded region (see first figure). The area of the half-petal
is swept out starting at θ = 0 and ending at the first intersection point of the curves.

4 cos(2θ) =
√
2

2θ = cos−1

(√
2

4

)

θ =
1

2
cos−1

(√
2

4

)

.

Then

A =

∫ 1/2 cos−1(
√
2/4)

0

1

2

(

(4 cos(2θ))2 − (
√
2)2
)

dθ =

∫ 1/2 cos−1(
√
2/4)

0

(

8 cos2(2θ)− 1
)

dθ

= [3θ + 2 cos(2θ) sin(2θ)]
1/2 cos−1(

√
2/4)

0 .

In the following picture, we have cos θ =

√
2

4
or, equivalently, θ = cos−1

(√
2

4

)

.
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Then

cos

(

cos−1

(√
2

4

))

=

√
2

4

sin

(

cos−1

(√
2

4

))

=

√
14

4
.

With these values, we have

A =

[

3

(

1

2
cos−1

(√
2

4

))

+ 2 cos

(

cos−1

(√
2

4

))

sin

(

cos−1

(√
2

4

))]

=
3

2
cos−1

(√
2

4

)

+

√
7

4
.

Then the full shaded region has area

8

(√
7

4
+

3

2
cos−1

(√
2

4

))

= 2
√
7 + 12 cos−1

(√
2

4

)

.

63. We start by finding
dx

dt
and

dy

dt
.

dx

dt
=

1√
t2 + 1

dy

dt
=

t√
t2 + 1

Using formula (2) in Section 9.3, the surface area S is

S = 2π

∫ 1

0

√

t2 + 1

√

(

1√
1 + t2

)2

+

(

t√
1 + t2

)2

dt = 2π

∫ 1

0

√

t2 + 1 dt

= 2π

[

t

2

√

t2 + 1 +
1

2
ln
∣

∣

∣
t+
√

t2 + 1
∣

∣

∣

]1

0

= π
(√

2 + ln(1 +
√
2)
)

,

where the integral was computed using the Table of Integrals 47.
65. Using formula (1) from Section 9.6, the surface area S is

S = 2π

∫ π/3

0

4 sin θ
√

[4]2 + [0]2 dθ = 32π

∫ π/3

0

sin θ dθ

= 32π [− cos θ]
π/3
0 = 16π .

AP
R©

Review Problems

1. For the pair of parametric equations in (B), eliminate the parameter t using a Pythagorean
Identity.

cos2 t+ sin2 t = 1
(x

2

)2

+

(

y − 1

−2

)2

= 1
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The rectangular equation represents a circle. In the parametric equations, −π ≤ t ≤ π,
so the curve begins when t = −π at the point (−2, 1), and ends when t = π at the point
(−2, 1). The curve traces out the circle exactly once.

The pair of equations in (A) traces out the ellipse (x− 2)
2
+

(

y − 1

2

)2

= 1.

The pair of equations in (C) traces out a circle three times.

The pair of equations in (D) traces out a line segment y = x for −π ≤ x ≤ π.

The answer is B.

3. We obtain parametric equations for r = 2 cos θ by using the conversion formulas x = r cos θ
and y = r sin θ.

x = r cos θ = 2 cos θ cos θ = 2 cos2 θ and y = r sin θ = 2 cos θ sin θ.

Then

dx

dθ
=

d

dθ

(

2 cos2 θ
)

= 4 cos θ(−sin θ) = −4 cos θ sin θ,

dy

dθ
=

d

dθ
(2 cos θ sin θ) = (2 cos θ)(cos θ) + (sin θ)(−2 sin θ) = 2

(

cos2 θ − sin2 θ
)

,

and
dy

dx
=

dy
dθ
dx
dθ

=
2
(

cos2 θ − sin2 θ
)

−4 cos θ sin θ
=

sin2 θ − cos2 θ

2 cos θ sin θ
.

At θ =
π

3
,

dy

dx
=

(

sin π
3

)2 −
(

cos π
3

)2

2 cos π
3 sin π

3

=

(√
3
2

)2

−
(

1
2

)2

2 ·
(

1
2

)

(√
3
2

) =
1
2√
3
2

=
1√
3
=

√
3

3
.

The answer is C.

5. x(t) = 2t2 + 5 y(t) = 3t− t3

Begin by finding the derivatives
dx

dt
and

dy

dt
.

dx

dt
= 4t

dy

dt
= 3− 3t2

The curve has a horizontal tangent when
dy

dt
= 3− 3t2 = 0, but

dx

dt
6= 0.

Note that 3− 3t2 = 0 when t = −1 and 1.

When t = −1, (x, y) = (7,−2). When t = −1, (x, y) = (7, 2).

The curve has a vertical tangent when
dx

dt
= 4t = 0.

Note that 4t = 0 when t = 0.

When t = 0, (x, y) = (5, 0).

The answer is C.
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7. To convert the equation r sin θ =
5

4
to rectangular coordinates, use y = r sin θ to obtain

y =
5

4
.

This is a horizontal line
5

4
units above the polar axis.

The answer is B.

9. Obtain parametric equations for r = 2θ/3 by using the conversion formulas x = r cos θ and
y = r sin θ.

x = r cos θ = 2θ/3 cos θ and y = r sin θ = 2θ/3 sin θ.

The answer is A.

11. The region inside the limaçon r = 2− cos θ is swept out by the interval 0 ≤ θ ≤ 2π.

The area of the region inside the limaçon is A =
1

2

∫ 2π

0

(2− cos θ)
2
dθ.

The region inside the circle r = cos θ is swept out by the interval 0 ≤ θ ≤ π.

The interval 0 ≤ θ ≤ π

2
sweeps out the upper half of the circle.

The area of the region inside the circle is A =
1

2

∫ π

0

(cos θ)
2
dθ =

1

2

∫ π

0

cos2 θ dθ or,

equivalently, A = 2 · 1
2

∫ π/2

0

cos2 θ dθ =

∫ π/2

0

cos2 θ dθ.

The area inside the limaçon r = 2− cos θ and outside the circle r = cos θ is

A =
1

2

∫ 2π

0

(2− cos θ)
2
dθ −

∫ π/2

0

cos2 θ dθ.

The quantity
1

2

∫ π

0

cos2 θ dθ is the area enclosed by a circle of radius
1

2
.

So,
1

2

∫ π

0

cos2 θ dθ = π

(

1

2

)2

=
π

4
.

Therefore, the area is also given by A =
1

2

∫ 2π

0

(2− cos θ)
2
dθ − π

4
.

Neither expression for the area A is equivalent to A =
1

2

∫ 2π

0

(2− 2 cos θ)
2
dθ.

The answer is C.


